OCC.gp module

class OCC.gp.SwigPyIterator(*args, **kwargs)

Bases: object

advance()
copy()
decr()
distance()
equal()
incr()
next()
previous()
thisown

The membership flag

value()
class OCC.gp.gp(*args, **kwargs)

Bases: object

static DX()
  • Returns a unit vector with the combination (1,0,0)
Return type:gp_Dir
static DX2d()
  • Returns a unit vector with the combinations (1,0)
Return type:gp_Dir2d
static DY()
  • Returns a unit vector with the combination (0,1,0)
Return type:gp_Dir
static DY2d()
  • Returns a unit vector with the combinations (0,1)
Return type:gp_Dir2d
static DZ()
  • Returns a unit vector with the combination (0,0,1)
Return type:gp_Dir
static OX()
  • //!Identifies an axis where its origin is Origin and its unit vector coordinates X = 1.0, Y = Z = 0.0
Return type:gp_Ax1
static OX2d()
  • Identifies an axis where its origin is Origin2d and its unit vector coordinates are: X = 1.0, Y = 0.0
Return type:gp_Ax2d
static OY()
  • //!Identifies an axis where its origin is Origin and its unit vector coordinates Y = 1.0, X = Z = 0.0
Return type:gp_Ax1
static OY2d()
  • Identifies an axis where its origin is Origin2d and its unit vector coordinates are Y = 1.0, X = 0.0
Return type:gp_Ax2d
static OZ()
  • //!Identifies an axis where its origin is Origin and its unit vector coordinates Z = 1.0, Y = X = 0.0
Return type:gp_Ax1
static Origin()
  • Identifies a Cartesian point with coordinates X = Y = Z = 0.0.0
Return type:gp_Pnt
static Origin2d()
  • Identifies a Cartesian point with coordinates X = Y = 0.0
Return type:gp_Pnt2d
static Resolution()
  • Parabola. Method of package gp In geometric computations, defines the tolerance criterion used to determine when two numbers can be considered equal. Many class functions use this tolerance criterion, for example, to avoid division by zero in geometric computations. In the documentation, tolerance criterion is always referred to as gp::Resolution().
Return type:float
static XOY()
  • //!Identifies a coordinate system where its origin is Origin, and its ‘main Direction’ and ‘X Direction’ coordinates Z = 1.0, X = Y =0.0 and X direction coordinates X = 1.0, Y = Z = 0.0
Return type:gp_Ax2
static YOZ()
  • //!Identifies a coordinate system where its origin is Origin, and its ‘main Direction’ and ‘X Direction’ coordinates X = 1.0, Z = Y =0.0 and X direction coordinates Y = 1.0, X = Z = 0.0 In 2D space
Return type:gp_Ax2
static ZOX()
  • //!Identifies a coordinate system where its origin is Origin, and its ‘main Direction’ and ‘X Direction’ coordinates Y = 1.0, X = Z =0.0 and X direction coordinates Z = 1.0, X = Y = 0.0
Return type:gp_Ax2
thisown

The membership flag

class OCC.gp.gp_Ax1(*args)

Bases: object

Angle()
  • Computes the angular value, in radians, between <self>.Direction() and <Other>.Direction(). Returns the angle between 0 and 2*PI radians.
Parameters:Other (gp_Ax1) –
Return type:float
Direction()
  • Returns the direction of <self>.
Return type:gp_Dir
IsCoaxial()
  • Returns True if : . the angle between <self> and <Other> is lower or equal to <AngularTolerance> and . the distance between <self>.Location() and <Other> is lower or equal to <LinearTolerance> and . the distance between <Other>.Location() and <self> is lower or equal to LinearTolerance.
Parameters:
  • Other (gp_Ax1) –
  • AngularTolerance (float) –
  • LinearTolerance (float) –
Return type:

bool

IsNormal()
  • Returns True if the direction of the <self> and <Other> are normal to each other. That is, if the angle between the two axes is equal to Pi/2. Note: the tolerance criterion is given by AngularTolerance..
Parameters:
  • Other (gp_Ax1) –
  • AngularTolerance (float) –
Return type:

bool

IsOpposite()
  • Returns True if the direction of <self> and <Other> are parallel with opposite orientation. That is, if the angle between the two axes is equal to Pi. Note: the tolerance criterion is given by AngularTolerance.
Parameters:
  • Other (gp_Ax1) –
  • AngularTolerance (float) –
Return type:

bool

IsParallel()
  • Returns True if the direction of <self> and <Other> are parallel with same orientation or opposite orientation. That is, if the angle between the two axes is equal to 0 or Pi. Note: the tolerance criterion is given by AngularTolerance.
Parameters:
  • Other (gp_Ax1) –
  • AngularTolerance (float) –
Return type:

bool

Location()
  • Returns the location point of <self>.
Return type:gp_Pnt
Mirror()
  • Performs the symmetrical transformation of an axis placement with respect to the point P which is the center of the symmetry and assigns the result to this axis.
Parameters:P (gp_Pnt) –
Return type:None
  • Performs the symmetrical transformation of an axis placement with respect to an axis placement which is the axis of the symmetry and assigns the result to this axis.
Parameters:A1 (gp_Ax1) –
Return type:None
  • Performs the symmetrical transformation of an axis placement with respect to a plane. The axis placement <A2> locates the plane of the symmetry : (Location, XDirection, YDirection) and assigns the result to this axis.
Parameters:A2 (gp_Ax2) –
Return type:None
Mirrored()
  • Performs the symmetrical transformation of an axis placement with respect to the point P which is the center of the symmetry and creates a new axis.
Parameters:P (gp_Pnt) –
Return type:gp_Ax1
  • Performs the symmetrical transformation of an axis placement with respect to an axis placement which is the axis of the symmetry and creates a new axis.
Parameters:A1 (gp_Ax1) –
Return type:gp_Ax1
  • Performs the symmetrical transformation of an axis placement with respect to a plane. The axis placement <A2> locates the plane of the symmetry : (Location, XDirection, YDirection) and creates a new axis.
Parameters:A2 (gp_Ax2) –
Return type:gp_Ax1
Reverse()
  • Reverses the unit vector of this axis. and assigns the result to this axis.
Return type:None
Reversed()
  • Reverses the unit vector of this axis and creates a new one.
Return type:gp_Ax1
Rotate()
  • Rotates this axis at an angle Ang (in radians) about the axis A1 and assigns the result to this axis.
Parameters:
  • A1 (gp_Ax1) –
  • Ang (float) –
Return type:

None

Rotated()
  • Rotates this axis at an angle Ang (in radians) about the axis A1 and creates a new one.
Parameters:
  • A1 (gp_Ax1) –
  • Ang (float) –
Return type:

gp_Ax1

Scale()
  • Applies a scaling transformation to this axis with: - scale factor S, and - center P and assigns the result to this axis.
Parameters:
  • P (gp_Pnt) –
  • S (float) –
Return type:

None

Scaled()
  • Applies a scaling transformation to this axis with: - scale factor S, and - center P and creates a new axis.
Parameters:
  • P (gp_Pnt) –
  • S (float) –
Return type:

gp_Ax1

SetDirection()
  • Assigns V as the ‘Direction’ of this axis.
Parameters:V (gp_Dir) –
Return type:None
SetLocation()
  • Assigns P as the origin of this axis.
Parameters:P (gp_Pnt) –
Return type:None
Transform()
  • Applies the transformation T to this axis. and assigns the result to this axis.
Parameters:T (gp_Trsf) –
Return type:None
Transformed()
  • Applies the transformation T to this axis and creates a new one. Translates an axis plaxement in the direction of the vector <V>. The magnitude of the translation is the vector’s magnitude.
Parameters:T (gp_Trsf) –
Return type:gp_Ax1
Translate()
  • Translates this axis by the vector V, and assigns the result to this axis.
Parameters:V (gp_Vec) –
Return type:None
  • Translates this axis by: the vector (P1, P2) defined from point P1 to point P2. and assigns the result to this axis.
Parameters:
  • P1 (gp_Pnt) –
  • P2 (gp_Pnt) –
Return type:

None

Translated()
  • Translates this axis by the vector V, and creates a new one.
Parameters:V (gp_Vec) –
Return type:gp_Ax1
  • Translates this axis by: the vector (P1, P2) defined from point P1 to point P2. and creates a new one.
Parameters:
  • P1 (gp_Pnt) –
  • P2 (gp_Pnt) –
Return type:

gp_Ax1

thisown

The membership flag

class OCC.gp.gp_Ax2(*args)

Bases: object

Angle()
  • Computes the angular value, in radians, between the main direction of <self> and the main direction of <Other>. Returns the angle between 0 and PI in radians.
Parameters:Other (gp_Ax2) –
Return type:float
Axis()
  • Returns the main axis of <self>. It is the ‘Location’ point and the main ‘Direction’.
Return type:gp_Ax1
Direction()
  • Returns the main direction of <self>.
Return type:gp_Dir
IsCoplanar()
Parameters:
  • Other (gp_Ax2) –
  • LinearTolerance (float) –
  • AngularTolerance (float) –
Return type:

bool

  • Returns True if . the distance between <self> and the ‘Location’ point of A1 is lower of equal to LinearTolerance and . the main direction of <self> and the direction of A1 are normal. Note: the tolerance criterion for angular equality is given by AngularTolerance.
Parameters:
  • A1 (gp_Ax1) –
  • LinearTolerance (float) –
  • AngularTolerance (float) –
Return type:

bool

Location()
  • Returns the ‘Location’ point (origin) of <self>.
Return type:gp_Pnt
Mirror()
  • Performs a symmetrical transformation of this coordinate system with respect to: - the point P, and assigns the result to this coordinate system. Warning This transformation is always performed on the origin. In case of a reflection with respect to a point: - the main direction of the coordinate system is not changed, and - the ‘X Direction’ and the ‘Y Direction’ are simply reversed In case of a reflection with respect to an axis or a plane: - the transformation is applied to the ‘X Direction’ and the ‘Y Direction’, then - the ‘main Direction’ is recomputed as the cross product ‘X Direction’ ^ ‘Y Direction’. This maintains the right-handed property of the coordinate system.
Parameters:P (gp_Pnt) –
Return type:None
  • Performs a symmetrical transformation of this coordinate system with respect to: - the axis A1, and assigns the result to this coordinate systeme. Warning This transformation is always performed on the origin. In case of a reflection with respect to a point: - the main direction of the coordinate system is not changed, and - the ‘X Direction’ and the ‘Y Direction’ are simply reversed In case of a reflection with respect to an axis or a plane: - the transformation is applied to the ‘X Direction’ and the ‘Y Direction’, then - the ‘main Direction’ is recomputed as the cross product ‘X Direction’ ^ ‘Y Direction’. This maintains the right-handed property of the coordinate system.
Parameters:A1 (gp_Ax1) –
Return type:None
  • Performs a symmetrical transformation of this coordinate system with respect to: - the plane defined by the origin, ‘X Direction’ and ‘Y Direction’ of coordinate system A2 and assigns the result to this coordinate systeme. Warning This transformation is always performed on the origin. In case of a reflection with respect to a point: - the main direction of the coordinate system is not changed, and - the ‘X Direction’ and the ‘Y Direction’ are simply reversed In case of a reflection with respect to an axis or a plane: - the transformation is applied to the ‘X Direction’ and the ‘Y Direction’, then - the ‘main Direction’ is recomputed as the cross product ‘X Direction’ ^ ‘Y Direction’. This maintains the right-handed property of the coordinate system.
Parameters:A2 (gp_Ax2) –
Return type:None
Mirrored()
  • Performs a symmetrical transformation of this coordinate system with respect to: - the point P, and creates a new one. Warning This transformation is always performed on the origin. In case of a reflection with respect to a point: - the main direction of the coordinate system is not changed, and - the ‘X Direction’ and the ‘Y Direction’ are simply reversed In case of a reflection with respect to an axis or a plane: - the transformation is applied to the ‘X Direction’ and the ‘Y Direction’, then - the ‘main Direction’ is recomputed as the cross product ‘X Direction’ ^ ‘Y Direction’. This maintains the right-handed property of the coordinate system.
Parameters:P (gp_Pnt) –
Return type:gp_Ax2
  • Performs a symmetrical transformation of this coordinate system with respect to: - the axis A1, and creates a new one. Warning This transformation is always performed on the origin. In case of a reflection with respect to a point: - the main direction of the coordinate system is not changed, and - the ‘X Direction’ and the ‘Y Direction’ are simply reversed In case of a reflection with respect to an axis or a plane: - the transformation is applied to the ‘X Direction’ and the ‘Y Direction’, then - the ‘main Direction’ is recomputed as the cross product ‘X Direction’ ^ ‘Y Direction’. This maintains the right-handed property of the coordinate system.
Parameters:A1 (gp_Ax1) –
Return type:gp_Ax2
  • Performs a symmetrical transformation of this coordinate system with respect to: - the plane defined by the origin, ‘X Direction’ and ‘Y Direction’ of coordinate system A2 and creates a new one. Warning This transformation is always performed on the origin. In case of a reflection with respect to a point: - the main direction of the coordinate system is not changed, and - the ‘X Direction’ and the ‘Y Direction’ are simply reversed In case of a reflection with respect to an axis or a plane: - the transformation is applied to the ‘X Direction’ and the ‘Y Direction’, then - the ‘main Direction’ is recomputed as the cross product ‘X Direction’ ^ ‘Y Direction’. This maintains the right-handed property of the coordinate system.
Parameters:A2 (gp_Ax2) –
Return type:gp_Ax2
Rotate()
Parameters:
  • A1 (gp_Ax1) –
  • Ang (float) –
Return type:

None

Rotated()
  • Rotates an axis placement. <A1> is the axis of the rotation . Ang is the angular value of the rotation in radians.
Parameters:
  • A1 (gp_Ax1) –
  • Ang (float) –
Return type:

gp_Ax2

Scale()
Parameters:
  • P (gp_Pnt) –
  • S (float) –
Return type:

None

Scaled()
  • Applies a scaling transformation on the axis placement. The ‘Location’ point of the axisplacement is modified. Warnings : If the scale <S> is negative : . the main direction of the axis placement is not changed. . The ‘XDirection’ and the ‘YDirection’ are reversed. So the axis placement stay right handed.
Parameters:
  • P (gp_Pnt) –
  • S (float) –
Return type:

gp_Ax2

SetAxis()
  • Assigns the origin and ‘main Direction’ of the axis A1 to this coordinate system, then recomputes its ‘X Direction’ and ‘Y Direction’. Note: The new ‘X Direction’ is computed as follows: new ‘X Direction’ = V1 ^(previous ‘X Direction’ ^ V) where V is the ‘Direction’ of A1. Exceptions Standard_ConstructionError if A1 is parallel to the ‘X Direction’ of this coordinate system.
Parameters:A1 (gp_Ax1) –
Return type:None
SetDirection()
  • Changes the ‘main Direction’ of this coordinate system, then recomputes its ‘X Direction’ and ‘Y Direction’. Note: the new ‘X Direction’ is computed as follows: new ‘X Direction’ = V ^ (previous ‘X Direction’ ^ V) Exceptions Standard_ConstructionError if V is parallel to the ‘X Direction’ of this coordinate system.
Parameters:V (gp_Dir) –
Return type:None
SetLocation()
  • Changes the ‘Location’ point (origin) of <self>.
Parameters:P (gp_Pnt) –
Return type:None
SetXDirection()
  • Changes the ‘Xdirection’ of <self>. The main direction ‘Direction’ is not modified, the ‘Ydirection’ is modified. If <Vx> is not normal to the main direction then <XDirection> is computed as follows XDirection = Direction ^ (Vx ^ Direction). Exceptions Standard_ConstructionError if Vx or Vy is parallel to the ‘main Direction’ of this coordinate system.
Parameters:Vx (gp_Dir) –
Return type:None
SetYDirection()
  • Changes the ‘Ydirection’ of <self>. The main direction is not modified but the ‘Xdirection’ is changed. If <Vy> is not normal to the main direction then ‘YDirection’ is computed as follows YDirection = Direction ^ (<Vy> ^ Direction). Exceptions Standard_ConstructionError if Vx or Vy is parallel to the ‘main Direction’ of this coordinate system.
Parameters:Vy (gp_Dir) –
Return type:None
Transform()
Parameters:T (gp_Trsf) –
Return type:None
Transformed()
  • Transforms an axis placement with a Trsf. The ‘Location’ point, the ‘XDirection’ and the ‘YDirection’ are transformed with T. The resulting main ‘Direction’ of <self> is the cross product between the ‘XDirection’ and the ‘YDirection’ after transformation.
Parameters:T (gp_Trsf) –
Return type:gp_Ax2
Translate()
Parameters:
  • V (gp_Vec) –
  • P1 (gp_Pnt) –
  • P2 (gp_Pnt) –
Return type:

None

Return type:

None

Translated()
  • Translates an axis plaxement in the direction of the vector <V>. The magnitude of the translation is the vector’s magnitude.
Parameters:V (gp_Vec) –
Return type:gp_Ax2
  • Translates an axis placement from the point <P1> to the point <P2>.
Parameters:
  • P1 (gp_Pnt) –
  • P2 (gp_Pnt) –
Return type:

gp_Ax2

XDirection()
  • Returns the ‘XDirection’ of <self>.
Return type:gp_Dir
YDirection()
  • Returns the ‘YDirection’ of <self>.
Return type:gp_Dir
thisown

The membership flag

class OCC.gp.gp_Ax22d(*args)

Bases: object

Location()
  • Returns the ‘Location’ point (origin) of <self>.
Return type:gp_Pnt2d
Mirror()
Parameters:
  • P (gp_Pnt2d) –
  • A (gp_Ax2d) –
Return type:

None

Return type:

None

Mirrored()
  • Performs the symmetrical transformation of an axis placement with respect to the point P which is the center of the symmetry. Warnings : The main direction of the axis placement is not changed. The ‘XDirection’ and the ‘YDirection’ are reversed. So the axis placement stay right handed.
Parameters:P (gp_Pnt2d) –
Return type:gp_Ax22d
  • Performs the symmetrical transformation of an axis placement with respect to an axis placement which is the axis of the symmetry. The transformation is performed on the ‘Location’ point, on the ‘XDirection’ and ‘YDirection’. The resulting main ‘Direction’ is the cross product between the ‘XDirection’ and the ‘YDirection’ after transformation.
Parameters:A (gp_Ax2d) –
Return type:gp_Ax22d
Rotate()
Parameters:
  • P (gp_Pnt2d) –
  • Ang (float) –
Return type:

None

Rotated()
  • Rotates an axis placement. <A1> is the axis of the rotation . Ang is the angular value of the rotation in radians.
Parameters:
  • P (gp_Pnt2d) –
  • Ang (float) –
Return type:

gp_Ax22d

Scale()
Parameters:
  • P (gp_Pnt2d) –
  • S (float) –
Return type:

None

Scaled()
  • Applies a scaling transformation on the axis placement. The ‘Location’ point of the axisplacement is modified. Warnings : If the scale <S> is negative : . the main direction of the axis placement is not changed. . The ‘XDirection’ and the ‘YDirection’ are reversed. So the axis placement stay right handed.
Parameters:
  • P (gp_Pnt2d) –
  • S (float) –
Return type:

gp_Ax22d

SetAxis()
  • Assigns the origin and the two unit vectors of the coordinate system A1 to this coordinate system.
Parameters:A1 (gp_Ax22d) –
Return type:None
SetLocation()
  • Changes the ‘Location’ point (origin) of <self>.
Parameters:P (gp_Pnt2d) –
Return type:None
SetXAxis()
  • Changes the XAxis and YAxis (‘Location’ point and ‘Direction’) of <self>. The ‘YDirection’ is recomputed in the same sense as before.
Parameters:A1 (gp_Ax2d) –
Return type:None
SetXDirection()
  • Assigns Vx to the ‘X Direction’ of this coordinate system. The other unit vector of this coordinate system is recomputed, normal to Vx , without modifying the orientation (right-handed or left-handed) of this coordinate system.
Parameters:Vx (gp_Dir2d) –
Return type:None
SetYAxis()
  • Changes the XAxis and YAxis (‘Location’ point and ‘Direction’) of <self>. The ‘XDirection’ is recomputed in the same sense as before.
Parameters:A1 (gp_Ax2d) –
Return type:None
SetYDirection()
  • Assignsr Vy to the ‘Y Direction’ of this coordinate system. The other unit vector of this coordinate system is recomputed, normal to Vy, without modifying the orientation (right-handed or left-handed) of this coordinate system.
Parameters:Vy (gp_Dir2d) –
Return type:None
Transform()
Parameters:T (gp_Trsf2d) –
Return type:None
Transformed()
  • Transforms an axis placement with a Trsf. The ‘Location’ point, the ‘XDirection’ and the ‘YDirection’ are transformed with T. The resulting main ‘Direction’ of <self> is the cross product between the ‘XDirection’ and the ‘YDirection’ after transformation.
Parameters:T (gp_Trsf2d) –
Return type:gp_Ax22d
Translate()
Parameters:
  • V (gp_Vec2d) –
  • P1 (gp_Pnt2d) –
  • P2 (gp_Pnt2d) –
Return type:

None

Return type:

None

Translated()
  • Translates an axis plaxement in the direction of the vector <V>. The magnitude of the translation is the vector’s magnitude.
Parameters:V (gp_Vec2d) –
Return type:gp_Ax22d
  • Translates an axis placement from the point <P1> to the point <P2>.
Parameters:
  • P1 (gp_Pnt2d) –
  • P2 (gp_Pnt2d) –
Return type:

gp_Ax22d

XAxis()
  • Returns an axis, for which - the origin is that of this coordinate system, and - the unit vector is either the ‘X Direction’ of this coordinate system. Note: the result is the ‘X Axis’ of this coordinate system.
Return type:gp_Ax2d
XDirection()
  • Returns the ‘XDirection’ of <self>.
Return type:gp_Dir2d
YAxis()
  • Returns an axis, for which - the origin is that of this coordinate system, and - the unit vector is either the ‘Y Direction’ of this coordinate system. Note: the result is the ‘Y Axis’ of this coordinate system.
Return type:gp_Ax2d
YDirection()
  • Returns the ‘YDirection’ of <self>.
Return type:gp_Dir2d
thisown

The membership flag

class OCC.gp.gp_Ax2d(*args)

Bases: object

Angle()
  • Computes the angle, in radians, between this axis and the axis Other. The value of the angle is between -Pi and Pi.
Parameters:Other (gp_Ax2d) –
Return type:float
Direction()
  • Returns the direction of <self>.
Return type:gp_Dir2d
IsCoaxial()
  • Returns True if : . the angle between <self> and <Other> is lower or equal to <AngularTolerance> and . the distance between <self>.Location() and <Other> is lower or equal to <LinearTolerance> and . the distance between <Other>.Location() and <self> is lower or equal to LinearTolerance.
Parameters:
  • Other (gp_Ax2d) –
  • AngularTolerance (float) –
  • LinearTolerance (float) –
Return type:

bool

IsNormal()
  • Returns true if this axis and the axis Other are normal to each other. That is, if the angle between the two axes is equal to Pi/2 or -Pi/2. Note: the tolerance criterion is given by AngularTolerance.
Parameters:
  • Other (gp_Ax2d) –
  • AngularTolerance (float) –
Return type:

bool

IsOpposite()
  • Returns true if this axis and the axis Other are parallel, and have opposite orientations. That is, if the angle between the two axes is equal to Pi or -Pi. Note: the tolerance criterion is given by AngularTolerance.
Parameters:
  • Other (gp_Ax2d) –
  • AngularTolerance (float) –
Return type:

bool

IsParallel()
  • Returns true if this axis and the axis Other are parallel, and have either the same or opposite orientations. That is, if the angle between the two axes is equal to 0, Pi or -Pi. Note: the tolerance criterion is given by AngularTolerance.
Parameters:
  • Other (gp_Ax2d) –
  • AngularTolerance (float) –
Return type:

bool

Location()
  • Returns the origin of <self>.
Return type:gp_Pnt2d
Mirror()
Parameters:
  • P (gp_Pnt2d) –
  • A (gp_Ax2d) –
Return type:

None

Return type:

None

Mirrored()
  • Performs the symmetrical transformation of an axis placement with respect to the point P which is the center of the symmetry.
Parameters:P (gp_Pnt2d) –
Return type:gp_Ax2d
  • Performs the symmetrical transformation of an axis placement with respect to an axis placement which is the axis of the symmetry.
Parameters:A (gp_Ax2d) –
Return type:gp_Ax2d
Reverse()
  • Reverses the direction of <self> and assigns the result to this axis.
Return type:None
Reversed()
  • Computes a new axis placement with a direction opposite to the direction of <self>.
Return type:gp_Ax2d
Rotate()
Parameters:
  • P (gp_Pnt2d) –
  • Ang (float) –
Return type:

None

Rotated()
  • Rotates an axis placement. <P> is the center of the rotation . Ang is the angular value of the rotation in radians.
Parameters:
  • P (gp_Pnt2d) –
  • Ang (float) –
Return type:

gp_Ax2d

Scale()
Parameters:
  • P (gp_Pnt2d) –
  • S (float) –
Return type:

None

Scaled()
  • Applies a scaling transformation on the axis placement. The ‘Location’ point of the axisplacement is modified. The ‘Direction’ is reversed if the scale is negative.
Parameters:
  • P (gp_Pnt2d) –
  • S (float) –
Return type:

gp_Ax2d

SetDirection()
  • Changes the direction of <self>.
Parameters:V (gp_Dir2d) –
Return type:None
SetLocation()
  • Changes the ‘Location’ point (origin) of <self>.
Parameters:Locat (gp_Pnt2d) –
Return type:None
Transform()
Parameters:T (gp_Trsf2d) –
Return type:None
Transformed()
  • Transforms an axis placement with a Trsf.
Parameters:T (gp_Trsf2d) –
Return type:gp_Ax2d
Translate()
Parameters:
  • V (gp_Vec2d) –
  • P1 (gp_Pnt2d) –
  • P2 (gp_Pnt2d) –
Return type:

None

Return type:

None

Translated()
  • Translates an axis placement in the direction of the vector <V>. The magnitude of the translation is the vector’s magnitude.
Parameters:V (gp_Vec2d) –
Return type:gp_Ax2d
  • Translates an axis placement from the point <P1> to the point <P2>.
Parameters:
  • P1 (gp_Pnt2d) –
  • P2 (gp_Pnt2d) –
Return type:

gp_Ax2d

thisown

The membership flag

class OCC.gp.gp_Ax3(*args)

Bases: object

Angle()
  • Computes the angular value between the main direction of <self> and the main direction of <Other>. Returns the angle between 0 and PI in radians.
Parameters:Other (gp_Ax3) –
Return type:float
Ax2()
  • Computes a right-handed coordinate system with the same ‘X Direction’ and ‘Y Direction’ as those of this coordinate system, then recomputes the ‘main Direction’. If this coordinate system is right-handed, the result returned is the same coordinate system. If this coordinate system is left-handed, the result is reversed.
Return type:gp_Ax2
Axis()
  • Returns the main axis of <self>. It is the ‘Location’ point and the main ‘Direction’.
Return type:gp_Ax1
Direct()
  • Returns True if the coordinate system is right-handed. i.e. XDirection().Crossed(YDirection()).Dot(Direction()) > 0
Return type:bool
Direction()
  • Returns the main direction of <self>.
Return type:gp_Dir
IsCoplanar()
  • Returns True if . the distance between the ‘Location’ point of <self> and <Other> is lower or equal to LinearTolerance and . the distance between the ‘Location’ point of <Other> and <self> is lower or equal to LinearTolerance and . the main direction of <self> and the main direction of <Other> are parallel (same or opposite orientation).
Parameters:
  • Other (gp_Ax3) –
  • LinearTolerance (float) –
  • AngularTolerance (float) –
Return type:

bool

  • Returns True if . the distance between <self> and the ‘Location’ point of A1 is lower of equal to LinearTolerance and . the distance between A1 and the ‘Location’ point of <self> is lower or equal to LinearTolerance and . the main direction of <self> and the direction of A1 are normal.
Parameters:
  • A1 (gp_Ax1) –
  • LinearTolerance (float) –
  • AngularTolerance (float) –
Return type:

bool

Location()
  • Returns the ‘Location’ point (origin) of <self>.
Return type:gp_Pnt
Mirror()
Parameters:
  • P (gp_Pnt) –
  • A1 (gp_Ax1) –
  • A2 (gp_Ax2) –
Return type:

None

Return type:

None

Return type:

None

Mirrored()
  • Performs the symmetrical transformation of an axis placement with respect to the point P which is the center of the symmetry. Warnings : The main direction of the axis placement is not changed. The ‘XDirection’ and the ‘YDirection’ are reversed. So the axis placement stay right handed.
Parameters:P (gp_Pnt) –
Return type:gp_Ax3
  • Performs the symmetrical transformation of an axis placement with respect to an axis placement which is the axis of the symmetry. The transformation is performed on the ‘Location’ point, on the ‘XDirection’ and ‘YDirection’. The resulting main ‘Direction’ is the cross product between the ‘XDirection’ and the ‘YDirection’ after transformation.
Parameters:A1 (gp_Ax1) –
Return type:gp_Ax3
  • Performs the symmetrical transformation of an axis placement with respect to a plane. The axis placement <A2> locates the plane of the symmetry : (Location, XDirection, YDirection). The transformation is performed on the ‘Location’ point, on the ‘XDirection’ and ‘YDirection’. The resulting main ‘Direction’ is the cross product between the ‘XDirection’ and the ‘YDirection’ after transformation.
Parameters:A2 (gp_Ax2) –
Return type:gp_Ax3
Rotate()
Parameters:
  • A1 (gp_Ax1) –
  • Ang (float) –
Return type:

None

Rotated()
  • Rotates an axis placement. <A1> is the axis of the rotation . Ang is the angular value of the rotation in radians.
Parameters:
  • A1 (gp_Ax1) –
  • Ang (float) –
Return type:

gp_Ax3

Scale()
Parameters:
  • P (gp_Pnt) –
  • S (float) –
Return type:

None

Scaled()
  • Applies a scaling transformation on the axis placement. The ‘Location’ point of the axisplacement is modified. Warnings : If the scale <S> is negative : . the main direction of the axis placement is not changed. . The ‘XDirection’ and the ‘YDirection’ are reversed. So the axis placement stay right handed.
Parameters:
  • P (gp_Pnt) –
  • S (float) –
Return type:

gp_Ax3

SetAxis()
  • Assigns the origin and ‘main Direction’ of the axis A1 to this coordinate system, then recomputes its ‘X Direction’ and ‘Y Direction’. Note: - The new ‘X Direction’ is computed as follows: new ‘X Direction’ = V1 ^(previous ‘X Direction’ ^ V) where V is the ‘Direction’ of A1. - The orientation of this coordinate system (right-handed or left-handed) is not modified. Raises ConstructionError if the ‘Direction’ of <A1> and the ‘XDirection’ of <self> are parallel (same or opposite orientation) because it is impossible to calculate the new ‘XDirection’ and the new ‘YDirection’.
Parameters:A1 (gp_Ax1) –
Return type:None
SetDirection()
  • Changes the main direction of this coordinate system, then recomputes its ‘X Direction’ and ‘Y Direction’. Note: - The new ‘X Direction’ is computed as follows: new ‘X Direction’ = V ^ (previous ‘X Direction’ ^ V). - The orientation of this coordinate system (left- or right-handed) is not modified. Raises ConstructionError if <V< and the previous ‘XDirection’ are parallel because it is impossible to calculate the new ‘XDirection’ and the new ‘YDirection’.
Parameters:V (gp_Dir) –
Return type:None
SetLocation()
  • Changes the ‘Location’ point (origin) of <self>.
Parameters:P (gp_Pnt) –
Return type:None
SetXDirection()
  • Changes the ‘Xdirection’ of <self>. The main direction ‘Direction’ is not modified, the ‘Ydirection’ is modified. If <Vx> is not normal to the main direction then <XDirection> is computed as follows XDirection = Direction ^ (Vx ^ Direction). Raises ConstructionError if <Vx> is parallel (same or opposite orientation) to the main direction of <self>
Parameters:Vx (gp_Dir) –
Return type:None
SetYDirection()
  • Changes the ‘Ydirection’ of <self>. The main direction is not modified but the ‘Xdirection’ is changed. If <Vy> is not normal to the main direction then ‘YDirection’ is computed as follows YDirection = Direction ^ (<Vy> ^ Direction). Raises ConstructionError if <Vy> is parallel to the main direction of <self>
Parameters:Vy (gp_Dir) –
Return type:None
Transform()
Parameters:T (gp_Trsf) –
Return type:None
Transformed()
  • Transforms an axis placement with a Trsf. The ‘Location’ point, the ‘XDirection’ and the ‘YDirection’ are transformed with T. The resulting main ‘Direction’ of <self> is the cross product between the ‘XDirection’ and the ‘YDirection’ after transformation.
Parameters:T (gp_Trsf) –
Return type:gp_Ax3
Translate()
Parameters:
  • V (gp_Vec) –
  • P1 (gp_Pnt) –
  • P2 (gp_Pnt) –
Return type:

None

Return type:

None

Translated()
  • Translates an axis plaxement in the direction of the vector <V>. The magnitude of the translation is the vector’s magnitude.
Parameters:V (gp_Vec) –
Return type:gp_Ax3
  • Translates an axis placement from the point <P1> to the point <P2>.
Parameters:
  • P1 (gp_Pnt) –
  • P2 (gp_Pnt) –
Return type:

gp_Ax3

XDirection()
  • Returns the ‘XDirection’ of <self>.
Return type:gp_Dir
XReverse()
  • Reverses the X direction of <self>.
Return type:None
YDirection()
  • Returns the ‘YDirection’ of <self>.
Return type:gp_Dir
YReverse()
  • Reverses the Y direction of <self>.
Return type:None
ZReverse()
  • Reverses the Z direction of <self>.
Return type:None
thisown

The membership flag

class OCC.gp.gp_Circ(*args)

Bases: object

Area()
  • Computes the area of the circle.
Return type:float
Axis()
  • Returns the main axis of the circle. It is the axis perpendicular to the plane of the circle, passing through the ‘Location’ point (center) of the circle.
Return type:gp_Ax1
Contains()
  • Returns True if the point P is on the circumference. The distance between <self> and <P> must be lower or equal to LinearTolerance.
Parameters:
  • P (gp_Pnt) –
  • LinearTolerance (float) –
Return type:

bool

Distance()
  • Computes the minimum of distance between the point P and any point on the circumference of the circle.
Parameters:P (gp_Pnt) –
Return type:float
Length()
  • Computes the circumference of the circle.
Return type:float
Location()
  • Returns the center of the circle. It is the ‘Location’ point of the local coordinate system of the circle
Return type:gp_Pnt
Mirror()
Parameters:
  • P (gp_Pnt) –
  • A1 (gp_Ax1) –
  • A2 (gp_Ax2) –
Return type:

None

Return type:

None

Return type:

None

Mirrored()
  • Performs the symmetrical transformation of a circle with respect to the point P which is the center of the symmetry.
Parameters:P (gp_Pnt) –
Return type:gp_Circ
  • Performs the symmetrical transformation of a circle with respect to an axis placement which is the axis of the symmetry.
Parameters:A1 (gp_Ax1) –
Return type:gp_Circ
  • Performs the symmetrical transformation of a circle with respect to a plane. The axis placement A2 locates the plane of the of the symmetry : (Location, XDirection, YDirection).
Parameters:A2 (gp_Ax2) –
Return type:gp_Circ
Position()
  • Returns the position of the circle. It is the local coordinate system of the circle.
Return type:gp_Ax2
Radius()
  • Returns the radius of this circle.
Return type:float
Rotate()
Parameters:
  • A1 (gp_Ax1) –
  • Ang (float) –
Return type:

None

Rotated()
  • Rotates a circle. A1 is the axis of the rotation. Ang is the angular value of the rotation in radians.
Parameters:
  • A1 (gp_Ax1) –
  • Ang (float) –
Return type:

gp_Circ

Scale()
Parameters:
  • P (gp_Pnt) –
  • S (float) –
Return type:

None

Scaled()
  • Scales a circle. S is the scaling value. Warnings : If S is negative the radius stay positive but the ‘XAxis’ and the ‘YAxis’ are reversed as for an ellipse.
Parameters:
  • P (gp_Pnt) –
  • S (float) –
Return type:

gp_Circ

SetAxis()
  • Changes the main axis of the circle. It is the axis perpendicular to the plane of the circle. Raises ConstructionError if the direction of A1 is parallel to the ‘XAxis’ of the circle.
Parameters:A1 (gp_Ax1) –
Return type:None
SetLocation()
  • Changes the ‘Location’ point (center) of the circle.
Parameters:P (gp_Pnt) –
Return type:None
SetPosition()
  • Changes the position of the circle.
Parameters:A2 (gp_Ax2) –
Return type:None
SetRadius()
  • Modifies the radius of this circle. Warning. This class does not prevent the creation of a circle where Radius is null. Exceptions Standard_ConstructionError if Radius is negative.
Parameters:Radius (float) –
Return type:None
SquareDistance()
  • Computes the square distance between <self> and the point P.
Parameters:P (gp_Pnt) –
Return type:float
Transform()
Parameters:T (gp_Trsf) –
Return type:None
Transformed()
  • Transforms a circle with the transformation T from class Trsf.
Parameters:T (gp_Trsf) –
Return type:gp_Circ
Translate()
Parameters:
  • V (gp_Vec) –
  • P1 (gp_Pnt) –
  • P2 (gp_Pnt) –
Return type:

None

Return type:

None

Translated()
  • Translates a circle in the direction of the vector V. The magnitude of the translation is the vector’s magnitude.
Parameters:V (gp_Vec) –
Return type:gp_Circ
  • Translates a circle from the point P1 to the point P2.
Parameters:
  • P1 (gp_Pnt) –
  • P2 (gp_Pnt) –
Return type:

gp_Circ

XAxis()
  • Returns the ‘XAxis’ of the circle. This axis is perpendicular to the axis of the conic. This axis and the ‘Yaxis’ define the plane of the conic.
Return type:gp_Ax1
YAxis()
  • Returns the ‘YAxis’ of the circle. This axis and the ‘Xaxis’ define the plane of the conic. The ‘YAxis’ is perpendicular to the ‘Xaxis’.
Return type:gp_Ax1
thisown

The membership flag

class OCC.gp.gp_Circ2d(*args)

Bases: object

Area()
  • Computes the area of the circle.
Return type:float
Axis()
  • returns the position of the circle.
Return type:gp_Ax22d
Coefficients()
  • Returns the normalized coefficients from the implicit equation of the circle : A * (X**2) + B * (Y**2) + 2*C*(X*Y) + 2*D*X + 2*E*Y + F = 0.0
Parameters:
  • A (float) –
  • B (float) –
  • C (float) –
  • D (float) –
  • E (float) –
  • F (float) –
Return type:

None

Contains()
  • Does <self> contain P ? Returns True if the distance between P and any point on the circumference of the circle is lower of equal to <LinearTolerance>.
Parameters:
  • P (gp_Pnt2d) –
  • LinearTolerance (float) –
Return type:

bool

Distance()
  • Computes the minimum of distance between the point P and any point on the circumference of the circle.
Parameters:P (gp_Pnt2d) –
Return type:float
IsDirect()
  • Returns true if the local coordinate system is direct and false in the other case.
Return type:bool
Length()
  • computes the circumference of the circle.
Return type:float
Location()
  • Returns the location point (center) of the circle.
Return type:gp_Pnt2d
Mirror()
Parameters:
  • P (gp_Pnt2d) –
  • A (gp_Ax2d) –
Return type:

None

Return type:

None

Mirrored()
  • Performs the symmetrical transformation of a circle with respect to the point P which is the center of the symmetry
Parameters:P (gp_Pnt2d) –
Return type:gp_Circ2d
  • Performs the symmetrical transformation of a circle with respect to an axis placement which is the axis of the symmetry.
Parameters:A (gp_Ax2d) –
Return type:gp_Circ2d
Position()
  • returns the position of the circle. Idem Axis(me).
Return type:gp_Ax22d
Radius()
  • Returns the radius value of the circle.
Return type:float
Reverse()
  • Reverses the orientation of the local coordinate system of this circle (the ‘Y Direction’ is reversed) and therefore changes the implicit orientation of this circle. Reverse assigns the result to this circle,
Return type:None
Reversed()
  • Reverses the orientation of the local coordinate system of this circle (the ‘Y Direction’ is reversed) and therefore changes the implicit orientation of this circle. Reversed creates a new circle.
Return type:gp_Circ2d
Rotate()
Parameters:
  • P (gp_Pnt2d) –
  • Ang (float) –
Return type:

None

Rotated()
  • Rotates a circle. P is the center of the rotation. Ang is the angular value of the rotation in radians.
Parameters:
  • P (gp_Pnt2d) –
  • Ang (float) –
Return type:

gp_Circ2d

Scale()
Parameters:
  • P (gp_Pnt2d) –
  • S (float) –
Return type:

None

Scaled()
  • Scales a circle. S is the scaling value. Warnings : If S is negative the radius stay positive but the ‘XAxis’ and the ‘YAxis’ are reversed as for an ellipse.
Parameters:
  • P (gp_Pnt2d) –
  • S (float) –
Return type:

gp_Circ2d

SetAxis()
  • Changes the X axis of the circle.
Parameters:A (gp_Ax22d) –
Return type:None
SetLocation()
  • Changes the location point (center) of the circle.
Parameters:P (gp_Pnt2d) –
Return type:None
SetRadius()
  • Modifies the radius of this circle. This class does not prevent the creation of a circle where Radius is null. Exceptions Standard_ConstructionError if Radius is negative.
Parameters:Radius (float) –
Return type:None
SetXAxis()
  • Changes the X axis of the circle.
Parameters:A (gp_Ax2d) –
Return type:None
SetYAxis()
  • Changes the Y axis of the circle.
Parameters:A (gp_Ax2d) –
Return type:None
SquareDistance()
  • Computes the square distance between <self> and the point P.
Parameters:P (gp_Pnt2d) –
Return type:float
Transform()
Parameters:T (gp_Trsf2d) –
Return type:None
Transformed()
  • Transforms a circle with the transformation T from class Trsf2d.
Parameters:T (gp_Trsf2d) –
Return type:gp_Circ2d
Translate()
Parameters:
  • V (gp_Vec2d) –
  • P1 (gp_Pnt2d) –
  • P2 (gp_Pnt2d) –
Return type:

None

Return type:

None

Translated()
  • Translates a circle in the direction of the vector V. The magnitude of the translation is the vector’s magnitude.
Parameters:V (gp_Vec2d) –
Return type:gp_Circ2d
  • Translates a circle from the point P1 to the point P2.
Parameters:
  • P1 (gp_Pnt2d) –
  • P2 (gp_Pnt2d) –
Return type:

gp_Circ2d

XAxis()
  • returns the X axis of the circle.
Return type:gp_Ax2d
YAxis()
  • Returns the Y axis of the circle. Reverses the direction of the circle.
Return type:gp_Ax2d
thisown

The membership flag

class OCC.gp.gp_Cone(*args)

Bases: object

Apex()
  • Computes the cone’s top. The Apex of the cone is on the negative side of the symmetry axis of the cone.
Return type:gp_Pnt
Axis()
  • returns the symmetry axis of the cone.
Return type:gp_Ax1
Coefficients()
  • Computes the coefficients of the implicit equation of the quadric in the absolute cartesian coordinates system : A1.X**2 + A2.Y**2 + A3.Z**2 + 2.(B1.X.Y + B2.X.Z + B3.Y.Z) + 2.(C1.X + C2.Y + C3.Z) + D = 0.0
Parameters:
  • A1 (float) –
  • A2 (float) –
  • A3 (float) –
  • B1 (float) –
  • B2 (float) –
  • B3 (float) –
  • C1 (float) –
  • C2 (float) –
  • C3 (float) –
  • D (float) –
Return type:

None

Direct()
  • Returns true if the local coordinate system of this cone is right-handed.
Return type:bool
Location()
  • returns the ‘Location’ point of the cone.
Return type:gp_Pnt
Mirror()
Parameters:
  • P (gp_Pnt) –
  • A1 (gp_Ax1) –
  • A2 (gp_Ax2) –
Return type:

None

Return type:

None

Return type:

None

Mirrored()
  • Performs the symmetrical transformation of a cone with respect to the point P which is the center of the symmetry.
Parameters:P (gp_Pnt) –
Return type:gp_Cone
  • Performs the symmetrical transformation of a cone with respect to an axis placement which is the axis of the symmetry.
Parameters:A1 (gp_Ax1) –
Return type:gp_Cone
  • Performs the symmetrical transformation of a cone with respect to a plane. The axis placement A2 locates the plane of the of the symmetry : (Location, XDirection, YDirection).
Parameters:A2 (gp_Ax2) –
Return type:gp_Cone
Position()
  • Returns the local coordinates system of the cone.
Return type:gp_Ax3
RefRadius()
  • Returns the radius of the cone in the reference plane.
Return type:float
Rotate()
Parameters:
  • A1 (gp_Ax1) –
  • Ang (float) –
Return type:

None

Rotated()
  • Rotates a cone. A1 is the axis of the rotation. Ang is the angular value of the rotation in radians.
Parameters:
  • A1 (gp_Ax1) –
  • Ang (float) –
Return type:

gp_Cone

Scale()
Parameters:
  • P (gp_Pnt) –
  • S (float) –
Return type:

None

Scaled()
  • Scales a cone. S is the scaling value. The absolute value of S is used to scale the cone
Parameters:
  • P (gp_Pnt) –
  • S (float) –
Return type:

gp_Cone

SemiAngle()
  • Returns the half-angle at the apex of this cone.
Return type:float
SetAxis()
  • Changes the symmetry axis of the cone. Raises ConstructionError the direction of A1 is parallel to the ‘XDirection’ of the coordinate system of the cone.
Parameters:A1 (gp_Ax1) –
Return type:None
SetLocation()
  • Changes the location of the cone.
Parameters:Loc (gp_Pnt) –
Return type:None
SetPosition()
  • Changes the local coordinate system of the cone. This coordinate system defines the reference plane of the cone.
Parameters:A3 (gp_Ax3) –
Return type:None
SetRadius()
  • Changes the radius of the cone in the reference plane of the cone. Raised if R < 0.0
Parameters:R (float) –
Return type:None
SetSemiAngle()
  • Changes the semi-angle of the cone. Ang is the conical surface semi-angle ]0,PI/2[. Raises ConstructionError if Ang < Resolution from gp or Ang >= PI/2 - Resolution
Parameters:Ang (float) –
Return type:None
Transform()
Parameters:T (gp_Trsf) –
Return type:None
Transformed()
  • Transforms a cone with the transformation T from class Trsf.
Parameters:T (gp_Trsf) –
Return type:gp_Cone
Translate()
Parameters:
  • V (gp_Vec) –
  • P1 (gp_Pnt) –
  • P2 (gp_Pnt) –
Return type:

None

Return type:

None

Translated()
  • Translates a cone in the direction of the vector V. The magnitude of the translation is the vector’s magnitude.
Parameters:V (gp_Vec) –
Return type:gp_Cone
  • Translates a cone from the point P1 to the point P2.
Parameters:
  • P1 (gp_Pnt) –
  • P2 (gp_Pnt) –
Return type:

gp_Cone

UReverse()
  • Reverses the U parametrization of the cone reversing the YAxis.
Return type:None
VReverse()
  • Reverses the V parametrization of the cone reversing the ZAxis.
Return type:None
XAxis()
  • Returns the XAxis of the reference plane.
Return type:gp_Ax1
YAxis()
  • Returns the YAxis of the reference plane.
Return type:gp_Ax1
thisown

The membership flag

class OCC.gp.gp_Cylinder(*args)

Bases: object

Axis()
  • Returns the symmetry axis of the cylinder.
Return type:gp_Ax1
Coefficients()
  • Computes the coefficients of the implicit equation of the quadric in the absolute cartesian coordinate system : A1.X**2 + A2.Y**2 + A3.Z**2 + 2.(B1.X.Y + B2.X.Z + B3.Y.Z) + 2.(C1.X + C2.Y + C3.Z) + D = 0.0
Parameters:
  • A1 (float) –
  • A2 (float) –
  • A3 (float) –
  • B1 (float) –
  • B2 (float) –
  • B3 (float) –
  • C1 (float) –
  • C2 (float) –
  • C3 (float) –
  • D (float) –
Return type:

None

Direct()
  • Returns true if the local coordinate system of this cylinder is right-handed.
Return type:bool
Location()
  • Returns the ‘Location’ point of the cylinder.
Return type:gp_Pnt
Mirror()
Parameters:
  • P (gp_Pnt) –
  • A1 (gp_Ax1) –
  • A2 (gp_Ax2) –
Return type:

None

Return type:

None

Return type:

None

Mirrored()
  • Performs the symmetrical transformation of a cylinder with respect to the point P which is the center of the symmetry.
Parameters:P (gp_Pnt) –
Return type:gp_Cylinder
  • Performs the symmetrical transformation of a cylinder with respect to an axis placement which is the axis of the symmetry.
Parameters:A1 (gp_Ax1) –
Return type:gp_Cylinder
  • Performs the symmetrical transformation of a cylinder with respect to a plane. The axis placement A2 locates the plane of the of the symmetry : (Location, XDirection, YDirection).
Parameters:A2 (gp_Ax2) –
Return type:gp_Cylinder
Position()
  • Returns the local coordinate system of the cylinder.
Return type:gp_Ax3
Radius()
  • Returns the radius of the cylinder.
Return type:float
Rotate()
Parameters:
  • A1 (gp_Ax1) –
  • Ang (float) –
Return type:

None

Rotated()
  • Rotates a cylinder. A1 is the axis of the rotation. Ang is the angular value of the rotation in radians.
Parameters:
  • A1 (gp_Ax1) –
  • Ang (float) –
Return type:

gp_Cylinder

Scale()
Parameters:
  • P (gp_Pnt) –
  • S (float) –
Return type:

None

Scaled()
  • Scales a cylinder. S is the scaling value. The absolute value of S is used to scale the cylinder
Parameters:
  • P (gp_Pnt) –
  • S (float) –
Return type:

gp_Cylinder

SetAxis()
  • Changes the symmetry axis of the cylinder. Raises ConstructionError if the direction of A1 is parallel to the ‘XDirection’ of the coordinate system of the cylinder.
Parameters:A1 (gp_Ax1) –
Return type:None
SetLocation()
  • Changes the location of the surface.
Parameters:Loc (gp_Pnt) –
Return type:None
SetPosition()
  • Change the local coordinate system of the surface.
Parameters:A3 (gp_Ax3) –
Return type:None
SetRadius()
  • Modifies the radius of this cylinder. Exceptions Standard_ConstructionError if R is negative.
Parameters:R (float) –
Return type:None
Transform()
Parameters:T (gp_Trsf) –
Return type:None
Transformed()
  • Transforms a cylinder with the transformation T from class Trsf.
Parameters:T (gp_Trsf) –
Return type:gp_Cylinder
Translate()
Parameters:
  • V (gp_Vec) –
  • P1 (gp_Pnt) –
  • P2 (gp_Pnt) –
Return type:

None

Return type:

None

Translated()
  • Translates a cylinder in the direction of the vector V. The magnitude of the translation is the vector’s magnitude.
Parameters:V (gp_Vec) –
Return type:gp_Cylinder
  • Translates a cylinder from the point P1 to the point P2.
Parameters:
  • P1 (gp_Pnt) –
  • P2 (gp_Pnt) –
Return type:

gp_Cylinder

UReverse()
  • Reverses the U parametrization of the cylinder reversing the YAxis.
Return type:None
VReverse()
  • Reverses the V parametrization of the plane reversing the Axis.
Return type:None
XAxis()
  • Returns the axis X of the cylinder.
Return type:gp_Ax1
YAxis()
  • Returns the axis Y of the cylinder.
Return type:gp_Ax1
thisown

The membership flag

OCC.gp.gp_DX()
  • Returns a unit vector with the combination (1,0,0)
Return type:gp_Dir
OCC.gp.gp_DX2d()
  • Returns a unit vector with the combinations (1,0)
Return type:gp_Dir2d
OCC.gp.gp_DY()
  • Returns a unit vector with the combination (0,1,0)
Return type:gp_Dir
OCC.gp.gp_DY2d()
  • Returns a unit vector with the combinations (0,1)
Return type:gp_Dir2d
OCC.gp.gp_DZ()
  • Returns a unit vector with the combination (0,0,1)
Return type:gp_Dir
class OCC.gp.gp_Dir(*args)

Bases: object

Angle()
  • Computes the angular value in radians between <self> and <Other>. This value is always positive in 3D space. Returns the angle in the range [0, PI]
Parameters:Other (gp_Dir) –
Return type:float
AngleWithRef()
  • Computes the angular value between <self> and <Other>. <VRef> is the direction of reference normal to <self> and <Other> and its orientation gives the positive sense of rotation. If the cross product <self> ^ <Other> has the same orientation as <VRef> the angular value is positive else negative. Returns the angular value in the range -PI and PI (in radians). Raises DomainError if <self> and <Other> are not parallel this exception is raised when <VRef> is in the same plane as <self> and <Other> The tolerance criterion is Resolution from package gp.
Parameters:
  • Other (gp_Dir) –
  • VRef (gp_Dir) –
Return type:

float

Coord()
  • Returns the coordinate of range Index : Index = 1 => X is returned Index = 2 => Y is returned Index = 3 => Z is returned Exceptions Standard_OutOfRange if Index is not 1, 2, or 3.
Parameters:Index (Standard_Integer) –
Return type:float
  • Returns for the unit vector its three coordinates Xv, Yv, and Zv.
Parameters:
  • Xv (float) –
  • Yv (float) –
  • Zv (float) –
Return type:

None

Cross()
  • Computes the cross product between two directions Raises the exception ConstructionError if the two directions are parallel because the computed vector cannot be normalized to create a direction.
Parameters:Right (gp_Dir) –
Return type:None
CrossCross()
Parameters:
  • V1 (gp_Dir) –
  • V2 (gp_Dir) –
Return type:

None

CrossCrossed()
  • Computes the double vector product this ^ (V1 ^ V2). - CrossCrossed creates a new unit vector. Exceptions Standard_ConstructionError if: - V1 and V2 are parallel, or - this unit vector and (V1 ^ V2) are parallel. This is because, in these conditions, the computed vector is null and cannot be normalized.
Parameters:
  • V1 (gp_Dir) –
  • V2 (gp_Dir) –
Return type:

gp_Dir

Crossed()
  • Computes the triple vector product. <self> ^ (V1 ^ V2) Raises the exception ConstructionError if V1 and V2 are parallel or <self> and (V1^V2) are parallel because the computed vector can’t be normalized to create a direction.
Parameters:Right (gp_Dir) –
Return type:gp_Dir
Dot()
  • Computes the scalar product
Parameters:Other (gp_Dir) –
Return type:float
DotCross()
  • Computes the triple scalar product <self> * (V1 ^ V2). Warnings : The computed vector V1’ = V1 ^ V2 is not normalized to create a unitary vector. So this method never raises an exception even if V1 and V2 are parallel.
Parameters:
  • V1 (gp_Dir) –
  • V2 (gp_Dir) –
Return type:

float

IsEqual()
  • Returns True if the angle between the two directions is lower or equal to AngularTolerance.
Parameters:
  • Other (gp_Dir) –
  • AngularTolerance (float) –
Return type:

bool

IsNormal()
  • Returns True if the angle between this unit vector and the unit vector Other is equal to Pi/2 (normal).
Parameters:
  • Other (gp_Dir) –
  • AngularTolerance (float) –
Return type:

bool

IsOpposite()
  • Returns True if the angle between this unit vector and the unit vector Other is equal to Pi (opposite).
Parameters:
  • Other (gp_Dir) –
  • AngularTolerance (float) –
Return type:

bool

IsParallel()
  • Returns true if the angle between this unit vector and the unit vector Other is equal to 0 or to Pi. Note: the tolerance criterion is given by AngularTolerance.
Parameters:
  • Other (gp_Dir) –
  • AngularTolerance (float) –
Return type:

bool

Mirror()
Parameters:
  • V (gp_Dir) –
  • A1 (gp_Ax1) –
  • A2 (gp_Ax2) –
Return type:

None

Return type:

None

Return type:

None

Mirrored()
  • Performs the symmetrical transformation of a direction with respect to the direction V which is the center of the symmetry.
Parameters:V (gp_Dir) –
Return type:gp_Dir
  • Performs the symmetrical transformation of a direction with respect to an axis placement which is the axis of the symmetry.
Parameters:A1 (gp_Ax1) –
Return type:gp_Dir
  • Performs the symmetrical transformation of a direction with respect to a plane. The axis placement A2 locates the plane of the symmetry : (Location, XDirection, YDirection).
Parameters:A2 (gp_Ax2) –
Return type:gp_Dir
Reverse()
Return type:None
Reversed()
  • Reverses the orientation of a direction geometric transformations Performs the symmetrical transformation of a direction with respect to the direction V which is the center of the symmetry.]
Return type:gp_Dir
Rotate()
Parameters:
  • A1 (gp_Ax1) –
  • Ang (float) –
Return type:

None

Rotated()
  • Rotates a direction. A1 is the axis of the rotation. Ang is the angular value of the rotation in radians.
Parameters:
  • A1 (gp_Ax1) –
  • Ang (float) –
Return type:

gp_Dir

SetCoord()
  • For this unit vector, assigns the value Xi to: - the X coordinate if Index is 1, or - the Y coordinate if Index is 2, or - the Z coordinate if Index is 3, and then normalizes it. Warning Remember that all the coordinates of a unit vector are implicitly modified when any single one is changed directly. Exceptions Standard_OutOfRange if Index is not 1, 2, or 3. Standard_ConstructionError if either of the following is less than or equal to gp::Resolution(): - Sqrt(Xv*Xv + Yv*Yv + Zv*Zv), or - the modulus of the number triple formed by the new value Xi and the two other coordinates of this vector that were not directly modified.
Parameters:
  • Index (Standard_Integer) –
  • Xi (float) –
Return type:

None

  • For this unit vector, assigns the values Xv, Yv and Zv to its three coordinates. Remember that all the coordinates of a unit vector are implicitly modified when any single one is changed directly.
Parameters:
  • Xv (float) –
  • Yv (float) –
  • Zv (float) –
Return type:

None

SetX()
  • Assigns the given value to the X coordinate of this unit vector.
Parameters:X (float) –
Return type:None
SetXYZ()
  • Assigns the three coordinates of Coord to this unit vector.
Parameters:Coord (gp_XYZ) –
Return type:None
SetY()
  • Assigns the given value to the Y coordinate of this unit vector.
Parameters:Y (float) –
Return type:None
SetZ()
  • Assigns the given value to the Z coordinate of this unit vector.
Parameters:Z (float) –
Return type:None
Transform()
Parameters:T (gp_Trsf) –
Return type:None
Transformed()
  • Transforms a direction with a ‘Trsf’ from gp. Warnings : If the scale factor of the ‘Trsf’ T is negative then the direction <self> is reversed.
Parameters:T (gp_Trsf) –
Return type:gp_Dir
X()
  • Returns the X coordinate for a unit vector.
Return type:float
XYZ()
  • for this unit vector, returns its three coordinates as a number triplea.
Return type:gp_XYZ
Y()
  • Returns the Y coordinate for a unit vector.
Return type:float
Z()
  • Returns the Z coordinate for a unit vector.
Return type:float
thisown

The membership flag

class OCC.gp.gp_Dir2d(*args)

Bases: object

Angle()
  • Computes the angular value in radians between <self> and <Other>. Returns the angle in the range [-PI, PI].
Parameters:Other (gp_Dir2d) –
Return type:float
Coord()
  • For this unit vector returns the coordinate of range Index : Index = 1 => X is returned Index = 2 => Y is returned Raises OutOfRange if Index != {1, 2}.
Parameters:Index (Standard_Integer) –
Return type:float
  • For this unit vector returns its two coordinates Xv and Yv. Raises OutOfRange if Index != {1, 2}.
Parameters:
  • Xv (float) –
  • Yv (float) –
Return type:

None

Crossed()
  • Computes the cross product between two directions.
Parameters:Right (gp_Dir2d) –
Return type:float
Dot()
  • Computes the scalar product
Parameters:Other (gp_Dir2d) –
Return type:float
IsEqual()
  • Returns True if the two vectors have the same direction i.e. the angle between this unit vector and the unit vector Other is less than or equal to AngularTolerance.
Parameters:
  • Other (gp_Dir2d) –
  • AngularTolerance (float) –
Return type:

bool

IsNormal()
  • Returns True if the angle between this unit vector and the unit vector Other is equal to Pi/2 or -Pi/2 (normal) i.e. Abs(Abs(<self>.Angle(Other)) - PI/2.) <= AngularTolerance
Parameters:
  • Other (gp_Dir2d) –
  • AngularTolerance (float) –
Return type:

bool

IsOpposite()
  • Returns True if the angle between this unit vector and the unit vector Other is equal to Pi or -Pi (opposite). i.e. PI - Abs(<self>.Angle(Other)) <= AngularTolerance
Parameters:
  • Other (gp_Dir2d) –
  • AngularTolerance (float) –
Return type:

bool

IsParallel()
  • returns true if if the angle between this unit vector and unit vector Other is equal to 0, Pi or -Pi. i.e. Abs(Angle(<self>, Other)) <= AngularTolerance or PI - Abs(Angle(<self>, Other)) <= AngularTolerance
Parameters:
  • Other (gp_Dir2d) –
  • AngularTolerance (float) –
Return type:

bool

Mirror()
Parameters:
  • V (gp_Dir2d) –
  • A (gp_Ax2d) –
Return type:

None

Return type:

None

Mirrored()
  • Performs the symmetrical transformation of a direction with respect to the direction V which is the center of the symmetry.
Parameters:V (gp_Dir2d) –
Return type:gp_Dir2d
  • Performs the symmetrical transformation of a direction with respect to an axis placement which is the axis of the symmetry.
Parameters:A (gp_Ax2d) –
Return type:gp_Dir2d
Reverse()
Return type:None
Reversed()
  • Reverses the orientation of a direction
Return type:gp_Dir2d
Rotate()
Parameters:Ang (float) –
Return type:None
Rotated()
  • Rotates a direction. Ang is the angular value of the rotation in radians.
Parameters:Ang (float) –
Return type:gp_Dir2d
SetCoord()
  • For this unit vector, assigns: the value Xi to: - the X coordinate if Index is 1, or - the Y coordinate if Index is 2, and then normalizes it. Warning Remember that all the coordinates of a unit vector are implicitly modified when any single one is changed directly. Exceptions Standard_OutOfRange if Index is not 1 or 2. Standard_ConstructionError if either of the following is less than or equal to gp::Resolution(): - Sqrt(Xv*Xv + Yv*Yv), or - the modulus of the number pair formed by the new value Xi and the other coordinate of this vector that was not directly modified. Raises OutOfRange if Index != {1, 2}.
Parameters:
  • Index (Standard_Integer) –
  • Xi (float) –
Return type:

None

  • For this unit vector, assigns: - the values Xv and Yv to its two coordinates, Warning Remember that all the coordinates of a unit vector are implicitly modified when any single one is changed directly. Exceptions Standard_OutOfRange if Index is not 1 or 2. Standard_ConstructionError if either of the following is less than or equal to gp::Resolution(): - Sqrt(Xv*Xv + Yv*Yv), or - the modulus of the number pair formed by the new value Xi and the other coordinate of this vector that was not directly modified. Raises OutOfRange if Index != {1, 2}.
Parameters:
  • Xv (float) –
  • Yv (float) –
Return type:

None

SetX()
  • Assigns the given value to the X coordinate of this unit vector, and then normalizes it. Warning Remember that all the coordinates of a unit vector are implicitly modified when any single one is changed directly. Exceptions Standard_ConstructionError if either of the following is less than or equal to gp::Resolution(): - the modulus of Coord, or - the modulus of the number pair formed from the new X or Y coordinate and the other coordinate of this vector that was not directly modified.
Parameters:X (float) –
Return type:None
SetXY()
  • Assigns: - the two coordinates of Coord to this unit vector, and then normalizes it. Warning Remember that all the coordinates of a unit vector are implicitly modified when any single one is changed directly. Exceptions Standard_ConstructionError if either of the following is less than or equal to gp::Resolution(): - the modulus of Coord, or - the modulus of the number pair formed from the new X or Y coordinate and the other coordinate of this vector that was not directly modified.
Parameters:Coord (gp_XY) –
Return type:None
SetY()
  • Assigns the given value to the Y coordinate of this unit vector, and then normalizes it. Warning Remember that all the coordinates of a unit vector are implicitly modified when any single one is changed directly. Exceptions Standard_ConstructionError if either of the following is less than or equal to gp::Resolution(): - the modulus of Coord, or - the modulus of the number pair formed from the new X or Y coordinate and the other coordinate of this vector that was not directly modified.
Parameters:Y (float) –
Return type:None
Transform()
Parameters:T (gp_Trsf2d) –
Return type:None
Transformed()
  • Transforms a direction with the ‘Trsf’ T. Warnings : If the scale factor of the ‘Trsf’ T is negative then the direction <self> is reversed.
Parameters:T (gp_Trsf2d) –
Return type:gp_Dir2d
X()
  • For this unit vector, returns its X coordinate.
Return type:float
XY()
  • For this unit vector, returns its two coordinates as a number pair. Comparison between Directions The precision value is an input data.
Return type:gp_XY
Y()
  • For this unit vector, returns its Y coordinate.
Return type:float
thisown

The membership flag

class OCC.gp.gp_Elips(*args)

Bases: object

Area()
  • Computes the area of the Ellipse.
Return type:float
Axis()
  • Computes the axis normal to the plane of the ellipse.
Return type:gp_Ax1
Directrix1()
  • Computes the first or second directrix of this ellipse. These are the lines, in the plane of the ellipse, normal to the major axis, at a distance equal to MajorRadius/e from the center of the ellipse, where e is the eccentricity of the ellipse. The first directrix (Directrix1) is on the positive side of the major axis. The second directrix (Directrix2) is on the negative side. The directrix is returned as an axis (gp_Ax1 object), the origin of which is situated on the ‘X Axis’ of the local coordinate system of this ellipse. Exceptions Standard_ConstructionError if the eccentricity is null (the ellipse has degenerated into a circle).
Return type:gp_Ax1
Directrix2()
  • This line is obtained by the symmetrical transformation of ‘Directrix1’ with respect to the ‘YAxis’ of the ellipse. Exceptions Standard_ConstructionError if the eccentricity is null (the ellipse has degenerated into a circle).
Return type:gp_Ax1
Eccentricity()
  • Returns the eccentricity of the ellipse between 0.0 and 1.0 If f is the distance between the center of the ellipse and the Focus1 then the eccentricity e = f / MajorRadius. Raises ConstructionError if MajorRadius = 0.0
Return type:float
Focal()
  • Computes the focal distance. It is the distance between the two focus focus1 and focus2 of the ellipse.
Return type:float
Focus1()
  • Returns the first focus of the ellipse. This focus is on the positive side of the ‘XAxis’ of the ellipse.
Return type:gp_Pnt
Focus2()
  • Returns the second focus of the ellipse. This focus is on the negative side of the ‘XAxis’ of the ellipse.
Return type:gp_Pnt
Location()
  • Returns the center of the ellipse. It is the ‘Location’ point of the coordinate system of the ellipse.
Return type:gp_Pnt
MajorRadius()
  • Returns the major radius of the ellipse.
Return type:float
MinorRadius()
  • Returns the minor radius of the ellipse.
Return type:float
Mirror()
Parameters:
  • P (gp_Pnt) –
  • A1 (gp_Ax1) –
  • A2 (gp_Ax2) –
Return type:

None

Return type:

None

Return type:

None

Mirrored()
  • Performs the symmetrical transformation of an ellipse with respect to the point P which is the center of the symmetry.
Parameters:P (gp_Pnt) –
Return type:gp_Elips
  • Performs the symmetrical transformation of an ellipse with respect to an axis placement which is the axis of the symmetry.
Parameters:A1 (gp_Ax1) –
Return type:gp_Elips
  • Performs the symmetrical transformation of an ellipse with respect to a plane. The axis placement A2 locates the plane of the symmetry (Location, XDirection, YDirection).
Parameters:A2 (gp_Ax2) –
Return type:gp_Elips
Parameter()
  • Returns p = (1 - e * e) * MajorRadius where e is the eccentricity of the ellipse. Returns 0 if MajorRadius = 0
Return type:float
Position()
  • Returns the coordinate system of the ellipse.
Return type:gp_Ax2
Rotate()
Parameters:
  • A1 (gp_Ax1) –
  • Ang (float) –
Return type:

None

Rotated()
  • Rotates an ellipse. A1 is the axis of the rotation. Ang is the angular value of the rotation in radians.
Parameters:
  • A1 (gp_Ax1) –
  • Ang (float) –
Return type:

gp_Elips

Scale()
Parameters:
  • P (gp_Pnt) –
  • S (float) –
Return type:

None

Scaled()
  • Scales an ellipse. S is the scaling value.
Parameters:
  • P (gp_Pnt) –
  • S (float) –
Return type:

gp_Elips

SetAxis()
  • Changes the axis normal to the plane of the ellipse. It modifies the definition of this plane. The ‘XAxis’ and the ‘YAxis’ are recomputed. The local coordinate system is redefined so that: - its origin and ‘main Direction’ become those of the axis A1 (the ‘X Direction’ and ‘Y Direction’ are then recomputed in the same way as for any gp_Ax2), or Raises ConstructionError if the direction of A1 is parallel to the direction of the ‘XAxis’ of the ellipse.
Parameters:A1 (gp_Ax1) –
Return type:None
SetLocation()
  • //!Modifies this ellipse, by redefining its local coordinate so that its origin becomes P.
Parameters:P (gp_Pnt) –
Return type:None
SetMajorRadius()
  • The major radius of the ellipse is on the ‘XAxis’ (major axis) of the ellipse. Raises ConstructionError if MajorRadius < MinorRadius.
Parameters:MajorRadius (float) –
Return type:None
SetMinorRadius()
  • The minor radius of the ellipse is on the ‘YAxis’ (minor axis) of the ellipse. Raises ConstructionError if MinorRadius > MajorRadius or MinorRadius < 0.
Parameters:MinorRadius (float) –
Return type:None
SetPosition()
  • Modifies this ellipse, by redefining its local coordinate so that it becomes A2e.
Parameters:A2 (gp_Ax2) –
Return type:None
Transform()
Parameters:T (gp_Trsf) –
Return type:None
Transformed()
  • Transforms an ellipse with the transformation T from class Trsf.
Parameters:T (gp_Trsf) –
Return type:gp_Elips
Translate()
Parameters:
  • V (gp_Vec) –
  • P1 (gp_Pnt) –
  • P2 (gp_Pnt) –
Return type:

None

Return type:

None

Translated()
  • Translates an ellipse in the direction of the vector V. The magnitude of the translation is the vector’s magnitude.
Parameters:V (gp_Vec) –
Return type:gp_Elips
  • Translates an ellipse from the point P1 to the point P2.
Parameters:
  • P1 (gp_Pnt) –
  • P2 (gp_Pnt) –
Return type:

gp_Elips

XAxis()
  • Returns the ‘XAxis’ of the ellipse whose origin is the center of this ellipse. It is the major axis of the ellipse.
Return type:gp_Ax1
YAxis()
  • Returns the ‘YAxis’ of the ellipse whose unit vector is the ‘X Direction’ or the ‘Y Direction’ of the local coordinate system of this ellipse. This is the minor axis of the ellipse.
Return type:gp_Ax1
thisown

The membership flag

class OCC.gp.gp_Elips2d(*args)

Bases: object

Area()
  • Computes the area of the ellipse.
Return type:float
Axis()
  • Returns the major axis of the ellipse.
Return type:gp_Ax22d
Coefficients()
  • Returns the coefficients of the implicit equation of the ellipse. A * (X**2) + B * (Y**2) + 2*C*(X*Y) + 2*D*X + 2*E*Y + F = 0.
Parameters:
  • A (float) –
  • B (float) –
  • C (float) –
  • D (float) –
  • E (float) –
  • F (float) –
Return type:

None

Directrix1()
  • This directrix is the line normal to the XAxis of the ellipse in the local plane (Z = 0) at a distance d = MajorRadius / e from the center of the ellipse, where e is the eccentricity of the ellipse. This line is parallel to the ‘YAxis’. The intersection point between directrix1 and the ‘XAxis’ is the location point of the directrix1. This point is on the positive side of the ‘XAxis’. Raised if Eccentricity = 0.0. (The ellipse degenerates into a circle)
Return type:gp_Ax2d
Directrix2()
  • This line is obtained by the symmetrical transformation of ‘Directrix1’ with respect to the minor axis of the ellipse. Raised if Eccentricity = 0.0. (The ellipse degenerates into a circle).
Return type:gp_Ax2d
Eccentricity()
  • Returns the eccentricity of the ellipse between 0.0 and 1.0 If f is the distance between the center of the ellipse and the Focus1 then the eccentricity e = f / MajorRadius. Returns 0 if MajorRadius = 0.
Return type:float
Focal()
  • Returns the distance between the center of the ellipse and focus1 or focus2.
Return type:float
Focus1()
  • Returns the first focus of the ellipse. This focus is on the positive side of the major axis of the ellipse.
Return type:gp_Pnt2d
Focus2()
  • Returns the second focus of the ellipse. This focus is on the negative side of the major axis of the ellipse.
Return type:gp_Pnt2d
IsDirect()
  • Returns true if the local coordinate system is direct and false in the other case.
Return type:bool
Location()
  • Returns the center of the ellipse.
Return type:gp_Pnt2d
MajorRadius()
  • Returns the major radius of the Ellipse.
Return type:float
MinorRadius()
  • Returns the minor radius of the Ellipse.
Return type:float
Mirror()
Parameters:
  • P (gp_Pnt2d) –
  • A (gp_Ax2d) –
Return type:

None

Return type:

None

Mirrored()
  • Performs the symmetrical transformation of a ellipse with respect to the point P which is the center of the symmetry
Parameters:P (gp_Pnt2d) –
Return type:gp_Elips2d
  • Performs the symmetrical transformation of a ellipse with respect to an axis placement which is the axis of the symmetry.
Parameters:A (gp_Ax2d) –
Return type:gp_Elips2d
Parameter()
  • Returns p = (1 - e * e) * MajorRadius where e is the eccentricity of the ellipse. Returns 0 if MajorRadius = 0
Return type:float
Reverse()
Return type:None
Reversed()
Return type:gp_Elips2d
Rotate()
Parameters:
  • P (gp_Pnt2d) –
  • Ang (float) –
Return type:

None

Rotated()
Parameters:
  • P (gp_Pnt2d) –
  • Ang (float) –
Return type:

gp_Elips2d

Scale()
Parameters:
  • P (gp_Pnt2d) –
  • S (float) –
Return type:

None

Scaled()
  • Scales a ellipse. S is the scaling value.
Parameters:
  • P (gp_Pnt2d) –
  • S (float) –
Return type:

gp_Elips2d

SetAxis()
  • Modifies this ellipse, by redefining its local coordinate system so that it becomes A.
Parameters:A (gp_Ax22d) –
Return type:None
SetLocation()
  • Modifies this ellipse, by redefining its local coordinate system so that - its origin becomes P.
Parameters:P (gp_Pnt2d) –
Return type:None
SetMajorRadius()
  • Changes the value of the major radius. Raises ConstructionError if MajorRadius < MinorRadius.
Parameters:MajorRadius (float) –
Return type:None
SetMinorRadius()
  • Changes the value of the minor radius. Raises ConstructionError if MajorRadius < MinorRadius or MinorRadius < 0.0
Parameters:MinorRadius (float) –
Return type:None
SetXAxis()
  • Modifies this ellipse, by redefining its local coordinate system so that its origin and its ‘X Direction’ become those of the axis A. The ‘Y Direction’ is then recomputed. The orientation of the local coordinate system is not modified.
Parameters:A (gp_Ax2d) –
Return type:None
SetYAxis()
  • Modifies this ellipse, by redefining its local coordinate system so that its origin and its ‘Y Direction’ become those of the axis A. The ‘X Direction’ is then recomputed. The orientation of the local coordinate system is not modified.
Parameters:A (gp_Ax2d) –
Return type:None
Transform()
Parameters:T (gp_Trsf2d) –
Return type:None
Transformed()
  • Transforms an ellipse with the transformation T from class Trsf2d.
Parameters:T (gp_Trsf2d) –
Return type:gp_Elips2d
Translate()
Parameters:
  • V (gp_Vec2d) –
  • P1 (gp_Pnt2d) –
  • P2 (gp_Pnt2d) –
Return type:

None

Return type:

None

Translated()
  • Translates a ellipse in the direction of the vector V. The magnitude of the translation is the vector’s magnitude.
Parameters:V (gp_Vec2d) –
Return type:gp_Elips2d
  • Translates a ellipse from the point P1 to the point P2.
Parameters:
  • P1 (gp_Pnt2d) –
  • P2 (gp_Pnt2d) –
Return type:

gp_Elips2d

XAxis()
  • Returns the major axis of the ellipse.
Return type:gp_Ax2d
YAxis()
  • Returns the minor axis of the ellipse. Reverses the direction of the circle.
Return type:gp_Ax2d
thisown

The membership flag

class OCC.gp.gp_GTrsf(*args)

Bases: object

Form()
  • Returns the nature of the transformation. It can be an identity transformation, a rotation, a translation, a mirror transformation (relative to a point, an axis or a plane), a scaling transformation, a compound transformation or some other type of transformation.
Return type:gp_TrsfForm
Invert()
Return type:None
Inverted()
  • Computes the reverse transformation. Raises an exception if the matrix of the transformation is not inversible.
Return type:gp_GTrsf
IsNegative()
  • Returns true if the determinant of the vectorial part of this transformation is negative.
Return type:bool
IsSingular()
  • Returns true if this transformation is singular (and therefore, cannot be inverted). Note: The Gauss LU decomposition is used to invert the transformation matrix. Consequently, the transformation is considered as singular if the largest pivot found is less than or equal to gp::Resolution(). Warning If this transformation is singular, it cannot be inverted.
Return type:bool
Multiplied()
  • Computes the transformation composed with <self> and T. <self> = T * <self>
Parameters:T (gp_GTrsf) –
Return type:gp_GTrsf
Multiply()
  • Computes the transformation composed from T and <self>. In a C++ implementation you can also write Tcomposed = <self> * T. Example : GTrsf T1, T2, Tcomp; ............... //composition : Tcomp = T2.Multiplied(T1); // or (Tcomp = T2 * T1) // transformation of a point XYZ P(10.,3.,4.); XYZ P1(P); Tcomp.Transforms(P1); //using Tcomp XYZ P2(P); T1.Transforms(P2); //using T1 then T2 T2.Transforms(P2); // P1 = P2 !!! C++: alias operator *=
Parameters:T (gp_GTrsf) –
Return type:None
Power()
Parameters:N (Standard_Integer) –
Return type:None
Powered()
  • Computes: - the product of this transformation multiplied by itself N times, if N is positive, or - the product of the inverse of this transformation multiplied by itself |N| times, if N is negative. If N equals zero, the result is equal to the Identity transformation. I.e.: <self> * <self> * .......* <self>, N time. if N =0 <self> = Identity if N < 0 <self> = <self>.Inverse() ........... <self>.Inverse(). Raises an exception if N < 0 and if the matrix of the transformation not inversible.
Parameters:N (Standard_Integer) –
Return type:gp_GTrsf
PreMultiply()
  • Computes the product of the transformation T and this transformation and assigns the result to this transformation. this = T * this
Parameters:T (gp_GTrsf) –
Return type:None
SetAffinity()
  • Changes this transformation into an affinity of ratio Ratio with respect to the axis A1. Note: an affinity is a point-by-point transformation that transforms any point P into a point P’ such that if H is the orthogonal projection of P on the axis A1 or the plane A2, the vectors HP and HP’ satisfy: HP’ = Ratio * HP.
Parameters:
  • A1 (gp_Ax1) –
  • Ratio (float) –
Return type:

None

  • Changes this transformation into an affinity of ratio Ratio with respect to the plane defined by the origin, the ‘X Direction’ and the ‘Y Direction’ of coordinate system A2. Note: an affinity is a point-by-point transformation that transforms any point P into a point P’ such that if H is the orthogonal projection of P on the axis A1 or the plane A2, the vectors HP and HP’ satisfy: HP’ = Ratio * HP.
Parameters:
  • A2 (gp_Ax2) –
  • Ratio (float) –
Return type:

None

SetForm()
  • verify and set the shape of the GTrsf Other or CompoundTrsf Ex : myGTrsf.SetValue(row1,col1,val1); myGTrsf.SetValue(row2,col2,val2); ... myGTrsf.SetForm();
Return type:None
SetTranslationPart()
  • Replaces the translation part of this transformation by the coordinates of the number triple Coord.
Parameters:Coord (gp_XYZ) –
Return type:None
SetTrsf()
  • Assigns the vectorial and translation parts of T to this transformation.
Parameters:T (gp_Trsf) –
Return type:None
SetValue()
  • Replaces the coefficient (Row, Col) of the matrix representing this transformation by Value. Raises OutOfRange if Row < 1 or Row > 3 or Col < 1 or Col > 4
Parameters:
  • Row (Standard_Integer) –
  • Col (Standard_Integer) –
  • Value (float) –
Return type:

None

SetVectorialPart()
  • Replaces the vectorial part of this transformation by Matrix.
Parameters:Matrix (gp_Mat) –
Return type:None
Transforms()
Parameters:Coord (gp_XYZ) –
Return type:None
  • Transforms a triplet XYZ with a GTrsf.
Parameters:
  • X (float) –
  • Y (float) –
  • Z (float) –
Return type:

None

TranslationPart()
  • Returns the translation part of the GTrsf.
Return type:gp_XYZ
Trsf()
Return type:gp_Trsf
Value()
  • Returns the coefficients of the global matrix of transformation. Raises OutOfRange if Row < 1 or Row > 3 or Col < 1 or Col > 4
Parameters:
  • Row (Standard_Integer) –
  • Col (Standard_Integer) –
Return type:

float

VectorialPart()
  • Computes the vectorial part of the GTrsf. The returned Matrix is a 3*3 matrix.
Return type:gp_Mat
thisown

The membership flag

class OCC.gp.gp_GTrsf2d(*args)

Bases: object

Form()
  • Returns the nature of the transformation. It can be an identity transformation, a rotation, a translation, a mirror transformation (relative to a point or axis), a scaling transformation, a compound transformation or some other type of transformation.
Return type:gp_TrsfForm
Invert()
Return type:None
Inverted()
  • Computes the reverse transformation. Raised an exception if the matrix of the transformation is not inversible.
Return type:gp_GTrsf2d
IsNegative()
  • Returns true if the determinant of the vectorial part of this transformation is negative.
Return type:bool
IsSingular()
  • Returns true if this transformation is singular (and therefore, cannot be inverted). Note: The Gauss LU decomposition is used to invert the transformation matrix. Consequently, the transformation is considered as singular if the largest pivot found is less than or equal to gp::Resolution(). Warning If this transformation is singular, it cannot be inverted.
Return type:bool
Multiplied()
  • Computes the transformation composed with T and <self>. In a C++ implementation you can also write Tcomposed = <self> * T. Example : GTrsf2d T1, T2, Tcomp; ............... //composition : Tcomp = T2.Multiplied(T1); // or (Tcomp = T2 * T1) // transformation of a point XY P(10.,3.); XY P1(P); Tcomp.Transforms(P1); //using Tcomp XY P2(P); T1.Transforms(P2); //using T1 then T2 T2.Transforms(P2); // P1 = P2 !!!
Parameters:T (gp_GTrsf2d) –
Return type:gp_GTrsf2d
Multiply()
Parameters:T (gp_GTrsf2d) –
Return type:None
Power()
Parameters:N (Standard_Integer) –
Return type:None
Powered()
  • Computes the following composition of transformations <self> * <self> * .......* <self>, N time. if N = 0 <self> = Identity if N < 0 <self> = <self>.Inverse() ........... <self>.Inverse(). Raises an exception if N < 0 and if the matrix of the transformation is not inversible.
Parameters:N (Standard_Integer) –
Return type:gp_GTrsf2d
PreMultiply()
  • Computes the product of the transformation T and this transformation, and assigns the result to this transformation: this = T * this
Parameters:T (gp_GTrsf2d) –
Return type:None
SetAffinity()
  • Changes this transformation into an affinity of ratio Ratio with respect to the axis A. Note: An affinity is a point-by-point transformation that transforms any point P into a point P’ such that if H is the orthogonal projection of P on the axis A, the vectors HP and HP’ satisfy: HP’ = Ratio * HP.
Parameters:
  • A (gp_Ax2d) –
  • Ratio (float) –
Return type:

None

SetTranslationPart()
  • Replacesthe translation part of this transformation by the coordinates of the number pair Coord.
Parameters:Coord (gp_XY) –
Return type:None
SetTrsf2d()
  • Assigns the vectorial and translation parts of T to this transformation.
Parameters:T (gp_Trsf2d) –
Return type:None
SetValue()
  • Replaces the coefficient (Row, Col) of the matrix representing this transformation by Value, Raises OutOfRange if Row < 1 or Row > 2 or Col < 1 or Col > 3
Parameters:
  • Row (Standard_Integer) –
  • Col (Standard_Integer) –
  • Value (float) –
Return type:

None

SetVectorialPart()
  • Replaces the vectorial part of this transformation by Matrix.
Parameters:Matrix (gp_Mat2d) –
Return type:None
Transformed()
Parameters:Coord (gp_XY) –
Return type:gp_XY
Transforms()
Parameters:Coord (gp_XY) –
Return type:None
  • Applies this transformation to the coordinates: - of the number pair Coord, or - X and Y. Note: - Transforms modifies X, Y, or the coordinate pair Coord, while - Transformed creates a new coordinate pair.
Parameters:
  • X (float) –
  • Y (float) –
Return type:

None

TranslationPart()
  • Returns the translation part of the GTrsf2d.
Return type:gp_XY
Trsf2d()
  • Converts this transformation into a gp_Trsf2d transformation. Exceptions Standard_ConstructionError if this transformation cannot be converted, i.e. if its form is gp_Other.
Return type:gp_Trsf2d
Value()
  • Returns the coefficients of the global matrix of transformation. Raised OutOfRange if Row < 1 or Row > 2 or Col < 1 or Col > 3
Parameters:
  • Row (Standard_Integer) –
  • Col (Standard_Integer) –
Return type:

float

VectorialPart()
  • Computes the vectorial part of the GTrsf2d. The returned Matrix is a 2*2 matrix.
Return type:gp_Mat2d
thisown

The membership flag

class OCC.gp.gp_Hypr(*args)

Bases: object

Asymptote1()
  • In the local coordinate system of the hyperbola the equation of the hyperbola is (X*X)/(A*A) - (Y*Y)/(B*B) = 1.0 and the equation of the first asymptote is Y = (B/A)*X where A is the major radius and B is the minor radius. Raises ConstructionError if MajorRadius = 0.0
Return type:gp_Ax1
Asymptote2()
  • In the local coordinate system of the hyperbola the equation of the hyperbola is (X*X)/(A*A) - (Y*Y)/(B*B) = 1.0 and the equation of the first asymptote is Y = -(B/A)*X. where A is the major radius and B is the minor radius. Raises ConstructionError if MajorRadius = 0.0
Return type:gp_Ax1
Axis()
  • Returns the axis passing through the center, and normal to the plane of this hyperbola.
Return type:gp_Ax1
ConjugateBranch1()
  • Computes the branch of hyperbola which is on the positive side of the ‘YAxis’ of <self>.
Return type:gp_Hypr
ConjugateBranch2()
  • Computes the branch of hyperbola which is on the negative side of the ‘YAxis’ of <self>.
Return type:gp_Hypr
Directrix1()
  • This directrix is the line normal to the XAxis of the hyperbola in the local plane (Z = 0) at a distance d = MajorRadius / e from the center of the hyperbola, where e is the eccentricity of the hyperbola. This line is parallel to the ‘YAxis’. The intersection point between the directrix1 and the ‘XAxis’ is the ‘Location’ point of the directrix1. This point is on the positive side of the ‘XAxis’.
Return type:gp_Ax1
Directrix2()
  • This line is obtained by the symmetrical transformation of ‘Directrix1’ with respect to the ‘YAxis’ of the hyperbola.
Return type:gp_Ax1
Eccentricity()
  • Returns the excentricity of the hyperbola (e > 1). If f is the distance between the location of the hyperbola and the Focus1 then the eccentricity e = f / MajorRadius. Raises DomainError if MajorRadius = 0.0
Return type:float
Focal()
  • Computes the focal distance. It is the distance between the the two focus of the hyperbola.
Return type:float
Focus1()
  • Returns the first focus of the hyperbola. This focus is on the positive side of the ‘XAxis’ of the hyperbola.
Return type:gp_Pnt
Focus2()
  • Returns the second focus of the hyperbola. This focus is on the negative side of the ‘XAxis’ of the hyperbola.
Return type:gp_Pnt
Location()
  • Returns the location point of the hyperbola. It is the intersection point between the ‘XAxis’ and the ‘YAxis’.
Return type:gp_Pnt
MajorRadius()
  • Returns the major radius of the hyperbola. It is the radius on the ‘XAxis’ of the hyperbola.
Return type:float
MinorRadius()
  • Returns the minor radius of the hyperbola. It is the radius on the ‘YAxis’ of the hyperbola.
Return type:float
Mirror()
Parameters:
  • P (gp_Pnt) –
  • A1 (gp_Ax1) –
  • A2 (gp_Ax2) –
Return type:

None

Return type:

None

Return type:

None

Mirrored()
  • Performs the symmetrical transformation of an hyperbola with respect to the point P which is the center of the symmetry.
Parameters:P (gp_Pnt) –
Return type:gp_Hypr
  • Performs the symmetrical transformation of an hyperbola with respect to an axis placement which is the axis of the symmetry.
Parameters:A1 (gp_Ax1) –
Return type:gp_Hypr
  • Performs the symmetrical transformation of an hyperbola with respect to a plane. The axis placement A2 locates the plane of the symmetry (Location, XDirection, YDirection).
Parameters:A2 (gp_Ax2) –
Return type:gp_Hypr
OtherBranch()
  • Returns the branch of hyperbola obtained by doing the symmetrical transformation of <self> with respect to the ‘YAxis’ of <self>.
Return type:gp_Hypr
Parameter()
  • Returns p = (e * e - 1) * MajorRadius where e is the eccentricity of the hyperbola. Raises DomainError if MajorRadius = 0.0
Return type:float
Position()
  • Returns the coordinate system of the hyperbola.
Return type:gp_Ax2
Rotate()
Parameters:
  • A1 (gp_Ax1) –
  • Ang (float) –
Return type:

None

Rotated()
  • Rotates an hyperbola. A1 is the axis of the rotation. Ang is the angular value of the rotation in radians.
Parameters:
  • A1 (gp_Ax1) –
  • Ang (float) –
Return type:

gp_Hypr

Scale()
Parameters:
  • P (gp_Pnt) –
  • S (float) –
Return type:

None

Scaled()
  • Scales an hyperbola. S is the scaling value.
Parameters:
  • P (gp_Pnt) –
  • S (float) –
Return type:

gp_Hypr

SetAxis()
  • Modifies this hyperbola, by redefining its local coordinate system so that: - its origin and ‘main Direction’ become those of the axis A1 (the ‘X Direction’ and ‘Y Direction’ are then recomputed in the same way as for any gp_Ax2). Raises ConstructionError if the direction of A1 is parallel to the direction of the ‘XAxis’ of the hyperbola.
Parameters:A1 (gp_Ax1) –
Return type:None
SetLocation()
  • Modifies this hyperbola, by redefining its local coordinate system so that its origin becomes P.
Parameters:P (gp_Pnt) –
Return type:None
SetMajorRadius()
  • Modifies the major radius of this hyperbola. Exceptions Standard_ConstructionError if MajorRadius is negative.
Parameters:MajorRadius (float) –
Return type:None
SetMinorRadius()
  • Modifies the minor radius of this hyperbola. Exceptions Standard_ConstructionError if MinorRadius is negative.
Parameters:MinorRadius (float) –
Return type:None
SetPosition()
  • Modifies this hyperbola, by redefining its local coordinate system so that it becomes A2.
Parameters:A2 (gp_Ax2) –
Return type:None
Transform()
Parameters:T (gp_Trsf) –
Return type:None
Transformed()
  • Transforms an hyperbola with the transformation T from class Trsf.
Parameters:T (gp_Trsf) –
Return type:gp_Hypr
Translate()
Parameters:
  • V (gp_Vec) –
  • P1 (gp_Pnt) –
  • P2 (gp_Pnt) –
Return type:

None

Return type:

None

Translated()
  • Translates an hyperbola in the direction of the vector V. The magnitude of the translation is the vector’s magnitude.
Parameters:V (gp_Vec) –
Return type:gp_Hypr
  • Translates an hyperbola from the point P1 to the point P2.
Parameters:
  • P1 (gp_Pnt) –
  • P2 (gp_Pnt) –
Return type:

gp_Hypr

XAxis()
  • Computes an axis, whose - the origin is the center of this hyperbola, and - the unit vector is the ‘X Direction’ of the local coordinate system of this hyperbola. These axes are, the major axis (the ‘X Axis’) and of this hyperboReturns the ‘XAxis’ of the hyperbola.
Return type:gp_Ax1
YAxis()
  • Computes an axis, whose - the origin is the center of this hyperbola, and - the unit vector is the ‘Y Direction’ of the local coordinate system of this hyperbola. These axes are the minor axis (the ‘Y Axis’) of this hyperbola
Return type:gp_Ax1
thisown

The membership flag

class OCC.gp.gp_Hypr2d(*args)

Bases: object

Asymptote1()
  • In the local coordinate system of the hyperbola the equation of the hyperbola is (X*X)/(A*A) - (Y*Y)/(B*B) = 1.0 and the equation of the first asymptote is Y = (B/A)*X where A is the major radius of the hyperbola and B the minor radius of the hyperbola. Raises ConstructionError if MajorRadius = 0.0
Return type:gp_Ax2d
Asymptote2()
  • In the local coordinate system of the hyperbola the equation of the hyperbola is (X*X)/(A*A) - (Y*Y)/(B*B) = 1.0 and the equation of the first asymptote is Y = -(B/A)*X where A is the major radius of the hyperbola and B the minor radius of the hyperbola. Raises ConstructionError if MajorRadius = 0.0
Return type:gp_Ax2d
Axis()
  • Returns the axisplacement of the hyperbola.
Return type:gp_Ax22d
Coefficients()
  • Computes the coefficients of the implicit equation of the hyperbola : A * (X**2) + B * (Y**2) + 2*C*(X*Y) + 2*D*X + 2*E*Y + F = 0.
Parameters:
  • A (float) –
  • B (float) –
  • C (float) –
  • D (float) –
  • E (float) –
  • F (float) –
Return type:

None

ConjugateBranch1()
  • Computes the branch of hyperbola which is on the positive side of the ‘YAxis’ of <self>.
Return type:gp_Hypr2d
ConjugateBranch2()
  • Computes the branch of hyperbola which is on the negative side of the ‘YAxis’ of <self>.
Return type:gp_Hypr2d
Directrix1()
  • Computes the directrix which is the line normal to the XAxis of the hyperbola in the local plane (Z = 0) at a distance d = MajorRadius / e from the center of the hyperbola, where e is the eccentricity of the hyperbola. This line is parallel to the ‘YAxis’. The intersection point between the ‘Directrix1’ and the ‘XAxis’ is the ‘Location’ point of the ‘Directrix1’. This point is on the positive side of the ‘XAxis’.
Return type:gp_Ax2d
Directrix2()
  • This line is obtained by the symmetrical transformation of ‘Directrix1’ with respect to the ‘YAxis’ of the hyperbola.
Return type:gp_Ax2d
Eccentricity()
  • Returns the excentricity of the hyperbola (e > 1). If f is the distance between the location of the hyperbola and the Focus1 then the eccentricity e = f / MajorRadius. Raises DomainError if MajorRadius = 0.0.
Return type:float
Focal()
  • Computes the focal distance. It is the distance between the ‘Location’ of the hyperbola and ‘Focus1’ or ‘Focus2’.
Return type:float
Focus1()
  • Returns the first focus of the hyperbola. This focus is on the positive side of the ‘XAxis’ of the hyperbola.
Return type:gp_Pnt2d
Focus2()
  • Returns the second focus of the hyperbola. This focus is on the negative side of the ‘XAxis’ of the hyperbola.
Return type:gp_Pnt2d
IsDirect()
  • Returns true if the local coordinate system is direct and false in the other case.
Return type:bool
Location()
  • Returns the location point of the hyperbola. It is the intersection point between the ‘XAxis’ and the ‘YAxis’.
Return type:gp_Pnt2d
MajorRadius()
  • Returns the major radius of the hyperbola (it is the radius corresponding to the ‘XAxis’ of the hyperbola).
Return type:float
MinorRadius()
  • Returns the minor radius of the hyperbola (it is the radius corresponding to the ‘YAxis’ of the hyperbola).
Return type:float
Mirror()
Parameters:
  • P (gp_Pnt2d) –
  • A (gp_Ax2d) –
Return type:

None

Return type:

None

Mirrored()
  • Performs the symmetrical transformation of an hyperbola with respect to the point P which is the center of the symmetry.
Parameters:P (gp_Pnt2d) –
Return type:gp_Hypr2d
  • Performs the symmetrical transformation of an hyperbola with respect to an axis placement which is the axis of the symmetry.
Parameters:A (gp_Ax2d) –
Return type:gp_Hypr2d
OtherBranch()
  • Returns the branch of hyperbola obtained by doing the symmetrical transformation of <self> with respect to the ‘YAxis’ of <self>.
Return type:gp_Hypr2d
Parameter()
  • Returns p = (e * e - 1) * MajorRadius where e is the eccentricity of the hyperbola. Raises DomainError if MajorRadius = 0.0
Return type:float
Reverse()
Return type:None
Reversed()
  • Reverses the orientation of the local coordinate system of this hyperbola (the ‘Y Axis’ is reversed). Therefore, the implicit orientation of this hyperbola is reversed. Note: - Reverse assigns the result to this hyperbola, while - Reversed creates a new one.
Return type:gp_Hypr2d
Rotate()
Parameters:
  • P (gp_Pnt2d) –
  • Ang (float) –
Return type:

None

Rotated()
  • Rotates an hyperbola. P is the center of the rotation. Ang is the angular value of the rotation in radians.
Parameters:
  • P (gp_Pnt2d) –
  • Ang (float) –
Return type:

gp_Hypr2d

Scale()
Parameters:
  • P (gp_Pnt2d) –
  • S (float) –
Return type:

None

Scaled()
  • Scales an hyperbola. <S> is the scaling value. If <S> is positive only the location point is modified. But if <S> is negative the ‘XAxis’ is reversed and the ‘YAxis’ too.
Parameters:
  • P (gp_Pnt2d) –
  • S (float) –
Return type:

gp_Hypr2d

SetAxis()
  • Modifies this hyperbola, by redefining its local coordinate system so that it becomes A.
Parameters:A (gp_Ax22d) –
Return type:None
SetLocation()
  • Modifies this hyperbola, by redefining its local coordinate system so that its origin becomes P.
Parameters:P (gp_Pnt2d) –
Return type:None
SetMajorRadius()
  • Modifies the major or minor radius of this hyperbola. Exceptions Standard_ConstructionError if MajorRadius or MinorRadius is negative.
Parameters:MajorRadius (float) –
Return type:None
SetMinorRadius()
  • Modifies the major or minor radius of this hyperbola. Exceptions Standard_ConstructionError if MajorRadius or MinorRadius is negative.
Parameters:MinorRadius (float) –
Return type:None
SetXAxis()
  • Changes the major axis of the hyperbola. The minor axis is recomputed and the location of the hyperbola too.
Parameters:A (gp_Ax2d) –
Return type:None
SetYAxis()
  • Changes the minor axis of the hyperbola.The minor axis is recomputed and the location of the hyperbola too.
Parameters:A (gp_Ax2d) –
Return type:None
Transform()
Parameters:T (gp_Trsf2d) –
Return type:None
Transformed()
  • Transforms an hyperbola with the transformation T from class Trsf2d.
Parameters:T (gp_Trsf2d) –
Return type:gp_Hypr2d
Translate()
Parameters:
  • V (gp_Vec2d) –
  • P1 (gp_Pnt2d) –
  • P2 (gp_Pnt2d) –
Return type:

None

Return type:

None

Translated()
  • Translates an hyperbola in the direction of the vector V. The magnitude of the translation is the vector’s magnitude.
Parameters:V (gp_Vec2d) –
Return type:gp_Hypr2d
  • Translates an hyperbola from the point P1 to the point P2.
Parameters:
  • P1 (gp_Pnt2d) –
  • P2 (gp_Pnt2d) –
Return type:

gp_Hypr2d

XAxis()
  • Computes an axis whose - the origin is the center of this hyperbola, and - the unit vector is the ‘X Direction’ or ‘Y Direction’ respectively of the local coordinate system of this hyperbola Returns the major axis of the hyperbola.
Return type:gp_Ax2d
YAxis()
  • Computes an axis whose - the origin is the center of this hyperbola, and - the unit vector is the ‘X Direction’ or ‘Y Direction’ respectively of the local coordinate system of this hyperbola Returns the minor axis of the hyperbola.
Return type:gp_Ax2d
thisown

The membership flag

class OCC.gp.gp_Lin(*args)

Bases: object

Angle()
  • Computes the angle between two lines in radians.
Parameters:Other (gp_Lin) –
Return type:float
Contains()
  • Returns true if this line contains the point P, that is, if the distance between point P and this line is less than or equal to LinearTolerance..
Parameters:
  • P (gp_Pnt) –
  • LinearTolerance (float) –
Return type:

bool

Direction()
  • Returns the direction of the line.
Return type:gp_Dir
Distance()
  • Computes the distance between <self> and the point P.
Parameters:P (gp_Pnt) –
Return type:float
  • Computes the distance between two lines.
Parameters:Other (gp_Lin) –
Return type:float
Location()
  • Returns the location point (origin) of the line.
Return type:gp_Pnt
Mirror()
Parameters:
  • P (gp_Pnt) –
  • A1 (gp_Ax1) –
  • A2 (gp_Ax2) –
Return type:

None

Return type:

None

Return type:

None

Mirrored()
  • Performs the symmetrical transformation of a line with respect to the point P which is the center of the symmetry.
Parameters:P (gp_Pnt) –
Return type:gp_Lin
  • Performs the symmetrical transformation of a line with respect to an axis placement which is the axis of the symmetry.
Parameters:A1 (gp_Ax1) –
Return type:gp_Lin
  • Performs the symmetrical transformation of a line with respect to a plane. The axis placement <A2> locates the plane of the symmetry : (Location, XDirection, YDirection).
Parameters:A2 (gp_Ax2) –
Return type:gp_Lin
Normal()
  • Computes the line normal to the direction of <self>, passing through the point P. Raises ConstructionError if the distance between <self> and the point P is lower or equal to Resolution from gp because there is an infinity of solutions in 3D space.
Parameters:P (gp_Pnt) –
Return type:gp_Lin
Position()
  • Returns the axis placement one axis whith the same location and direction as <self>.
Return type:gp_Ax1
Reverse()
Return type:None
Reversed()
  • Reverses the direction of the line. Note: - Reverse assigns the result to this line, while - Reversed creates a new one.
Return type:gp_Lin
Rotate()
Parameters:
  • A1 (gp_Ax1) –
  • Ang (float) –
Return type:

None

Rotated()
  • Rotates a line. A1 is the axis of the rotation. Ang is the angular value of the rotation in radians.
Parameters:
  • A1 (gp_Ax1) –
  • Ang (float) –
Return type:

gp_Lin

Scale()
Parameters:
  • P (gp_Pnt) –
  • S (float) –
Return type:

None

Scaled()
  • Scales a line. S is the scaling value. The ‘Location’ point (origin) of the line is modified. The ‘Direction’ is reversed if the scale is negative.
Parameters:
  • P (gp_Pnt) –
  • S (float) –
Return type:

gp_Lin

SetDirection()
  • Changes the direction of the line.
Parameters:V (gp_Dir) –
Return type:None
SetLocation()
  • Changes the location point (origin) of the line.
Parameters:P (gp_Pnt) –
Return type:None
SetPosition()
  • Complete redefinition of the line. The ‘Location’ point of <A1> is the origin of the line. The ‘Direction’ of <A1> is the direction of the line.
Parameters:A1 (gp_Ax1) –
Return type:None
SquareDistance()
  • Computes the square distance between <self> and the point P.
Parameters:P (gp_Pnt) –
Return type:float
  • Computes the square distance between two lines.
Parameters:Other (gp_Lin) –
Return type:float
Transform()
Parameters:T (gp_Trsf) –
Return type:None
Transformed()
  • Transforms a line with the transformation T from class Trsf.
Parameters:T (gp_Trsf) –
Return type:gp_Lin
Translate()
Parameters:
  • V (gp_Vec) –
  • P1 (gp_Pnt) –
  • P2 (gp_Pnt) –
Return type:

None

Return type:

None

Translated()
  • Translates a line in the direction of the vector V. The magnitude of the translation is the vector’s magnitude.
Parameters:V (gp_Vec) –
Return type:gp_Lin
  • Translates a line from the point P1 to the point P2.
Parameters:
  • P1 (gp_Pnt) –
  • P2 (gp_Pnt) –
Return type:

gp_Lin

thisown

The membership flag

class OCC.gp.gp_Lin2d(*args)

Bases: object

Angle()
  • Computes the angle between two lines in radians.
Parameters:Other (gp_Lin2d) –
Return type:float
Coefficients()
  • Returns the normalized coefficients of the line : A * X + B * Y + C = 0.
Parameters:
  • A (float) –
  • B (float) –
  • C (float) –
Return type:

None

Contains()
  • Returns true if this line contains the point P, that is, if the distance between point P and this line is less than or equal to LinearTolerance.
Parameters:
  • P (gp_Pnt2d) –
  • LinearTolerance (float) –
Return type:

bool

Direction()
  • Returns the direction of the line.
Return type:gp_Dir2d
Distance()
  • Computes the distance between <self> and the point <P>.
Parameters:P (gp_Pnt2d) –
Return type:float
  • Computes the distance between two lines.
Parameters:Other (gp_Lin2d) –
Return type:float
Location()
  • Returns the location point (origin) of the line.
Return type:gp_Pnt2d
Mirror()
Parameters:
  • P (gp_Pnt2d) –
  • A (gp_Ax2d) –
Return type:

None

Return type:

None

Mirrored()
  • Performs the symmetrical transformation of a line with respect to the point <P> which is the center of the symmetry
Parameters:P (gp_Pnt2d) –
Return type:gp_Lin2d
  • Performs the symmetrical transformation of a line with respect to an axis placement which is the axis of the symmetry.
Parameters:A (gp_Ax2d) –
Return type:gp_Lin2d
Normal()
  • Computes the line normal to the direction of <self>, passing through the point <P>.
Parameters:P (gp_Pnt2d) –
Return type:gp_Lin2d
Position()
  • Returns the axis placement one axis whith the same location and direction as <self>.
Return type:gp_Ax2d
Reverse()
Return type:None
Reversed()
  • Reverses the positioning axis of this line. Note: - Reverse assigns the result to this line, while - Reversed creates a new one.
Return type:gp_Lin2d
Rotate()
Parameters:
  • P (gp_Pnt2d) –
  • Ang (float) –
Return type:

None

Rotated()
  • Rotates a line. P is the center of the rotation. Ang is the angular value of the rotation in radians.
Parameters:
  • P (gp_Pnt2d) –
  • Ang (float) –
Return type:

gp_Lin2d

Scale()
Parameters:
  • P (gp_Pnt2d) –
  • S (float) –
Return type:

None

Scaled()
  • Scales a line. S is the scaling value. Only the origin of the line is modified.
Parameters:
  • P (gp_Pnt2d) –
  • S (float) –
Return type:

gp_Lin2d

SetDirection()
  • Changes the direction of the line.
Parameters:V (gp_Dir2d) –
Return type:None
SetLocation()
  • Changes the origin of the line.
Parameters:P (gp_Pnt2d) –
Return type:None
SetPosition()
  • Complete redefinition of the line. The ‘Location’ point of <A> is the origin of the line. The ‘Direction’ of <A> is the direction of the line.
Parameters:A (gp_Ax2d) –
Return type:None
SquareDistance()
  • Computes the square distance between <self> and the point <P>.
Parameters:P (gp_Pnt2d) –
Return type:float
  • Computes the square distance between two lines.
Parameters:Other (gp_Lin2d) –
Return type:float
Transform()
Parameters:T (gp_Trsf2d) –
Return type:None
Transformed()
  • Transforms a line with the transformation T from class Trsf2d.
Parameters:T (gp_Trsf2d) –
Return type:gp_Lin2d
Translate()
Parameters:
  • V (gp_Vec2d) –
  • P1 (gp_Pnt2d) –
  • P2 (gp_Pnt2d) –
Return type:

None

Return type:

None

Translated()
  • Translates a line in the direction of the vector V. The magnitude of the translation is the vector’s magnitude.
Parameters:V (gp_Vec2d) –
Return type:gp_Lin2d
  • Translates a line from the point P1 to the point P2.
Parameters:
  • P1 (gp_Pnt2d) –
  • P2 (gp_Pnt2d) –
Return type:

gp_Lin2d

thisown

The membership flag

class OCC.gp.gp_Mat(*args)

Bases: object

Add()
Parameters:Other (gp_Mat) –
Return type:None
Added()
  • Computes the sum of this matrix and the matrix Other for each coefficient of the matrix : <self>.Coef(i,j) + <Other>.Coef(i,j)
Parameters:Other (gp_Mat) –
Return type:gp_Mat
ChangeValue()
  • Returns the coefficient of range (Row, Col) Raises OutOfRange if Row < 1 or Row > 3 or Col < 1 or Col > 3
Parameters:
  • Row (Standard_Integer) –
  • Col (Standard_Integer) –
Return type:

float

Column()
  • Returns the column of Col index. Raises OutOfRange if Col < 1 or Col > 3
Parameters:Col (Standard_Integer) –
Return type:gp_XYZ
Determinant()
  • Computes the determinant of the matrix.
Return type:float
Diagonal()
  • Returns the main diagonal of the matrix.
Return type:gp_XYZ
Divide()
Parameters:Scalar (float) –
Return type:None
Divided()
  • Divides all the coefficients of the matrix by Scalar
Parameters:Scalar (float) –
Return type:gp_Mat
Invert()
Return type:None
Inverted()
  • Inverses the matrix and raises if the matrix is singular. - Invert assigns the result to this matrix, while - Inverted creates a new one. Warning The Gauss LU decomposition is used to invert the matrix. Consequently, the matrix is considered as singular if the largest pivot found is less than or equal to gp::Resolution(). Exceptions Standard_ConstructionError if this matrix is singular, and therefore cannot be inverted.
Return type:gp_Mat
IsSingular()
  • The Gauss LU decomposition is used to invert the matrix (see Math package) so the matrix is considered as singular if the largest pivot found is lower or equal to Resolution from gp.
Return type:bool
Multiplied()
  • Computes the product of two matrices <self> * <Other>
Parameters:
  • Other (gp_Mat) –
  • Scalar (float) –
Return type:

gp_Mat

Return type:

gp_Mat

Multiply()
  • Computes the product of two matrices <self> = <Other> * <self>.
Parameters:Other (gp_Mat) –
Return type:None
  • Multiplies all the coefficients of the matrix by Scalar
Parameters:Scalar (float) –
Return type:None
Power()
Parameters:N (Standard_Integer) –
Return type:None
Powered()
  • Computes <self> = <self> * <self> * .......* <self>, N time. if N = 0 <self> = Identity if N < 0 <self> = <self>.Invert() ........... <self>.Invert(). If N < 0 an exception will be raised if the matrix is not inversible
Parameters:N (Standard_Integer) –
Return type:gp_Mat
PreMultiply()
Parameters:Other (gp_Mat) –
Return type:None
Row()
  • returns the row of Row index. Raises OutOfRange if Row < 1 or Row > 3
Parameters:Row (Standard_Integer) –
Return type:gp_XYZ
SetCol()
  • Assigns the three coordinates of Value to the column of index Col of this matrix. Raises OutOfRange if Col < 1 or Col > 3.
Parameters:
  • Col (Standard_Integer) –
  • Value (gp_XYZ) –
Return type:

None

SetCols()
  • Assigns the number triples Col1, Col2, Col3 to the three columns of this matrix.
Parameters:
  • Col1 (gp_XYZ) –
  • Col2 (gp_XYZ) –
  • Col3 (gp_XYZ) –
Return type:

None

SetCross()
  • Modifies the matrix M so that applying it to any number triple (X, Y, Z) produces the same result as the cross product of Ref and the number triple (X, Y, Z): i.e.: M * {X,Y,Z}t = Ref.Cross({X, Y ,Z}) this matrix is anti symmetric. To apply this matrix to the triplet {XYZ} is the same as to do the cross product between the triplet Ref and the triplet {XYZ}. Note: this matrix is anti-symmetric.
Parameters:Ref (gp_XYZ) –
Return type:None
SetDiagonal()
  • Modifies the main diagonal of the matrix. <self>.Value (1, 1) = X1 <self>.Value (2, 2) = X2 <self>.Value (3, 3) = X3 The other coefficients of the matrix are not modified.
Parameters:
  • X1 (float) –
  • X2 (float) –
  • X3 (float) –
Return type:

None

SetDot()
  • Modifies this matrix so that applying it to any number triple (X, Y, Z) produces the same result as the scalar product of Ref and the number triple (X, Y, Z): this * (X,Y,Z) = Ref.(X,Y,Z) Note: this matrix is symmetric.
Parameters:Ref (gp_XYZ) –
Return type:None
SetIdentity()
  • Modifies this matrix so that it represents the Identity matrix.
Return type:None
SetRotation()
  • Modifies this matrix so that it represents a rotation. Ang is the angular value in radians and the XYZ axis gives the direction of the rotation. Raises ConstructionError if XYZ.Modulus() <= Resolution()
Parameters:
  • Axis (gp_XYZ) –
  • Ang (float) –
Return type:

None

SetRow()
  • Assigns the three coordinates of Value to the row of index Row of this matrix. Raises OutOfRange if Row < 1 or Row > 3.
Parameters:
  • Row (Standard_Integer) –
  • Value (gp_XYZ) –
Return type:

None

SetRows()
  • Assigns the number triples Row1, Row2, Row3 to the three rows of this matrix.
Parameters:
  • Row1 (gp_XYZ) –
  • Row2 (gp_XYZ) –
  • Row3 (gp_XYZ) –
Return type:

None

SetScale()
  • Modifies the the matrix so that it represents a scaling transformation, where S is the scale factor. : | S 0.0 0.0 | <self> = | 0.0 S 0.0 | | 0.0 0.0 S |
Parameters:S (float) –
Return type:None
SetValue()
  • Assigns <Value> to the coefficient of row Row, column Col of this matrix. Raises OutOfRange if Row < 1 or Row > 3 or Col < 1 or Col > 3
Parameters:
  • Row (Standard_Integer) –
  • Col (Standard_Integer) –
  • Value (float) –
Return type:

None

Subtract()
Parameters:Other (gp_Mat) –
Return type:None
Subtracted()
  • cOmputes for each coefficient of the matrix : <self>.Coef(i,j) - <Other>.Coef(i,j)
Parameters:Other (gp_Mat) –
Return type:gp_Mat
Transpose()
Return type:None
Transposed()
  • Transposes the matrix. A(j, i) -> A (i, j)
Return type:gp_Mat
Value()
  • Returns the coefficient of range (Row, Col) Raises OutOfRange if Row < 1 or Row > 3 or Col < 1 or Col > 3
Parameters:
  • Row (Standard_Integer) –
  • Col (Standard_Integer) –
Return type:

float

thisown

The membership flag

class OCC.gp.gp_Mat2d(*args)

Bases: object

Add()
Parameters:Other (gp_Mat2d) –
Return type:None
Added()
  • Computes the sum of this matrix and the matrix Other.for each coefficient of the matrix : <self>.Coef(i,j) + <Other>.Coef(i,j) Note: - operator += assigns the result to this matrix, while - operator + creates a new one.
Parameters:Other (gp_Mat2d) –
Return type:gp_Mat2d
ChangeValue()
  • Returns the coefficient of range (Row, Col) Raises OutOfRange if Row < 1 or Row > 2 or Col < 1 or Col > 2
Parameters:
  • Row (Standard_Integer) –
  • Col (Standard_Integer) –
Return type:

float

Column()
  • Returns the column of Col index. Raises OutOfRange if Col < 1 or Col > 2
Parameters:Col (Standard_Integer) –
Return type:gp_XY
Determinant()
  • Computes the determinant of the matrix.
Return type:float
Diagonal()
  • Returns the main diagonal of the matrix.
Return type:gp_XY
Divide()
Parameters:Scalar (float) –
Return type:None
Divided()
  • Divides all the coefficients of the matrix by a scalar.
Parameters:Scalar (float) –
Return type:gp_Mat2d
Invert()
Return type:None
Inverted()
  • Inverses the matrix and raises exception if the matrix is singular.
Return type:gp_Mat2d
IsSingular()
  • Returns true if this matrix is singular (and therefore, cannot be inverted). The Gauss LU decomposition is used to invert the matrix so the matrix is considered as singular if the largest pivot found is lower or equal to Resolution from gp.
Return type:bool
Multiplied()
Parameters:
  • Other (gp_Mat2d) –
  • Scalar (float) –
Return type:

gp_Mat2d

Return type:

gp_Mat2d

Multiply()
  • Computes the product of two matrices <self> * <Other>
Parameters:Other (gp_Mat2d) –
Return type:None
  • Multiplies all the coefficients of the matrix by a scalar.
Parameters:Scalar (float) –
Return type:None
Power()
Parameters:N (Standard_Integer) –
Return type:None
Powered()
  • computes <self> = <self> * <self> * .......* <self>, N time. if N = 0 <self> = Identity if N < 0 <self> = <self>.Invert() ........... <self>.Invert(). If N < 0 an exception can be raised if the matrix is not inversible
Parameters:N (Standard_Integer) –
Return type:gp_Mat2d
PreMultiply()
  • Modifies this matrix by premultiplying it by the matrix Other <self> = Other * <self>.
Parameters:Other (gp_Mat2d) –
Return type:None
Row()
  • Returns the row of index Row. Raised if Row < 1 or Row > 2
Parameters:Row (Standard_Integer) –
Return type:gp_XY
SetCol()
  • Assigns the two coordinates of Value to the column of range Col of this matrix Raises OutOfRange if Col < 1 or Col > 2.
Parameters:
  • Col (Standard_Integer) –
  • Value (gp_XY) –
Return type:

None

SetCols()
  • Assigns the number pairs Col1, Col2 to the two columns of this matrix
Parameters:
  • Col1 (gp_XY) –
  • Col2 (gp_XY) –
Return type:

None

SetDiagonal()
  • Modifies the main diagonal of the matrix. <self>.Value (1, 1) = X1 <self>.Value (2, 2) = X2 The other coefficients of the matrix are not modified.
Parameters:
  • X1 (float) –
  • X2 (float) –
Return type:

None

SetIdentity()
  • Modifies this matrix, so that it represents the Identity matrix.
Return type:None
SetRotation()
  • Modifies this matrix, so that it representso a rotation. Ang is the angular value in radian of the rotation.
Parameters:Ang (float) –
Return type:None
SetRow()
  • Assigns the two coordinates of Value to the row of index Row of this matrix. Raises OutOfRange if Row < 1 or Row > 2.
Parameters:
  • Row (Standard_Integer) –
  • Value (gp_XY) –
Return type:

None

SetRows()
  • Assigns the number pairs Row1, Row2 to the two rows of this matrix.
Parameters:
  • Row1 (gp_XY) –
  • Row2 (gp_XY) –
Return type:

None

SetScale()
  • Modifies the matrix such that it represents a scaling transformation, where S is the scale factor : | S 0.0 | <self> = | 0.0 S |
Parameters:S (float) –
Return type:None
SetValue()
  • Assigns <Value> to the coefficient of row Row, column Col of this matrix. Raises OutOfRange if Row < 1 or Row > 2 or Col < 1 or Col > 2
Parameters:
  • Row (Standard_Integer) –
  • Col (Standard_Integer) –
  • Value (float) –
Return type:

None

Subtract()
Parameters:Other (gp_Mat2d) –
Return type:None
Subtracted()
  • Computes for each coefficient of the matrix : <self>.Coef(i,j) - <Other>.Coef(i,j)
Parameters:Other (gp_Mat2d) –
Return type:gp_Mat2d
Transpose()
Return type:None
Transposed()
  • Transposes the matrix. A(j, i) -> A (i, j)
Return type:gp_Mat2d
Value()
  • Returns the coefficient of range (Row, Col) Raises OutOfRange if Row < 1 or Row > 2 or Col < 1 or Col > 2
Parameters:
  • Row (Standard_Integer) –
  • Col (Standard_Integer) –
Return type:

float

thisown

The membership flag

OCC.gp.gp_OX()
  • //!Identifies an axis where its origin is Origin and its unit vector coordinates X = 1.0, Y = Z = 0.0
Return type:gp_Ax1
OCC.gp.gp_OX2d()
  • Identifies an axis where its origin is Origin2d and its unit vector coordinates are: X = 1.0, Y = 0.0
Return type:gp_Ax2d
OCC.gp.gp_OY()
  • //!Identifies an axis where its origin is Origin and its unit vector coordinates Y = 1.0, X = Z = 0.0
Return type:gp_Ax1
OCC.gp.gp_OY2d()
  • Identifies an axis where its origin is Origin2d and its unit vector coordinates are Y = 1.0, X = 0.0
Return type:gp_Ax2d
OCC.gp.gp_OZ()
  • //!Identifies an axis where its origin is Origin and its unit vector coordinates Z = 1.0, Y = X = 0.0
Return type:gp_Ax1
OCC.gp.gp_Origin()
  • Identifies a Cartesian point with coordinates X = Y = Z = 0.0.0
Return type:gp_Pnt
OCC.gp.gp_Origin2d()
  • Identifies a Cartesian point with coordinates X = Y = 0.0
Return type:gp_Pnt2d
class OCC.gp.gp_Parab(*args)

Bases: object

Axis()
  • Returns the main axis of the parabola. It is the axis normal to the plane of the parabola passing through the vertex of the parabola.
Return type:gp_Ax1
Directrix()
  • Computes the directrix of this parabola. The directrix is: - a line parallel to the ‘Y Direction’ of the local coordinate system of this parabola, and - located on the negative side of the axis of symmetry, at a distance from the apex which is equal to the focal length of this parabola. The directrix is returned as an axis (a gp_Ax1 object), the origin of which is situated on the ‘X Axis’ of this parabola.
Return type:gp_Ax1
Focal()
  • Returns the distance between the vertex and the focus of the parabola.
Return type:float
Focus()
    • Computes the focus of the parabola.
Return type:gp_Pnt
Location()
  • Returns the vertex of the parabola. It is the ‘Location’ point of the coordinate system of the parabola.
Return type:gp_Pnt
Mirror()
Parameters:
  • P (gp_Pnt) –
  • A1 (gp_Ax1) –
  • A2 (gp_Ax2) –
Return type:

None

Return type:

None

Return type:

None

Mirrored()
  • Performs the symmetrical transformation of a parabola with respect to the point P which is the center of the symmetry.
Parameters:P (gp_Pnt) –
Return type:gp_Parab
  • Performs the symmetrical transformation of a parabola with respect to an axis placement which is the axis of the symmetry.
Parameters:A1 (gp_Ax1) –
Return type:gp_Parab
  • Performs the symmetrical transformation of a parabola with respect to a plane. The axis placement A2 locates the plane of the symmetry (Location, XDirection, YDirection).
Parameters:A2 (gp_Ax2) –
Return type:gp_Parab
Parameter()
  • Computes the parameter of the parabola. It is the distance between the focus and the directrix of the parabola. This distance is twice the focal length.
Return type:float
Position()
  • Returns the local coordinate system of the parabola.
Return type:gp_Ax2
Rotate()
Parameters:
  • A1 (gp_Ax1) –
  • Ang (float) –
Return type:

None

Rotated()
  • Rotates a parabola. A1 is the axis of the rotation. Ang is the angular value of the rotation in radians.
Parameters:
  • A1 (gp_Ax1) –
  • Ang (float) –
Return type:

gp_Parab

Scale()
Parameters:
  • P (gp_Pnt) –
  • S (float) –
Return type:

None

Scaled()
  • Scales a parabola. S is the scaling value. If S is negative the direction of the symmetry axis XAxis is reversed and the direction of the YAxis too.
Parameters:
  • P (gp_Pnt) –
  • S (float) –
Return type:

gp_Parab

SetAxis()
  • Modifies this parabola by redefining its local coordinate system so that - its origin and ‘main Direction’ become those of the axis A1 (the ‘X Direction’ and ‘Y Direction’ are then recomputed in the same way as for any gp_Ax2) Raises ConstructionError if the direction of A1 is parallel to the previous XAxis of the parabola.
Parameters:A1 (gp_Ax1) –
Return type:None
SetFocal()
  • Changes the focal distance of the parabola. Raises ConstructionError if Focal < 0.0
Parameters:Focal (float) –
Return type:None
SetLocation()
  • Changes the location of the parabola. It is the vertex of the parabola.
Parameters:P (gp_Pnt) –
Return type:None
SetPosition()
  • Changes the local coordinate system of the parabola.
Parameters:A2 (gp_Ax2) –
Return type:None
Transform()
Parameters:T (gp_Trsf) –
Return type:None
Transformed()
  • Transforms a parabola with the transformation T from class Trsf.
Parameters:T (gp_Trsf) –
Return type:gp_Parab
Translate()
Parameters:
  • V (gp_Vec) –
  • P1 (gp_Pnt) –
  • P2 (gp_Pnt) –
Return type:

None

Return type:

None

Translated()
  • Translates a parabola in the direction of the vector V. The magnitude of the translation is the vector’s magnitude.
Parameters:V (gp_Vec) –
Return type:gp_Parab
  • Translates a parabola from the point P1 to the point P2.
Parameters:
  • P1 (gp_Pnt) –
  • P2 (gp_Pnt) –
Return type:

gp_Parab

XAxis()
  • Returns the symmetry axis of the parabola. The location point of the axis is the vertex of the parabola.
Return type:gp_Ax1
YAxis()
  • It is an axis parallel to the directrix of the parabola. The location point of this axis is the vertex of the parabola.
Return type:gp_Ax1
thisown

The membership flag

class OCC.gp.gp_Parab2d(*args)

Bases: object

Axis()
  • Returns the local coordinate system of the parabola. The ‘Location’ point of this axis is the vertex of the parabola.
Return type:gp_Ax22d
Coefficients()
  • Computes the coefficients of the implicit equation of the parabola. A * (X**2) + B * (Y**2) + 2*C*(X*Y) + 2*D*X + 2*E*Y + F = 0.
Parameters:
  • A (float) –
  • B (float) –
  • C (float) –
  • D (float) –
  • E (float) –
  • F (float) –
Return type:

None

Directrix()
  • Computes the directrix of the parabola. The directrix is: - a line parallel to the ‘Y Direction’ of the local coordinate system of this parabola, and - located on the negative side of the axis of symmetry, at a distance from the apex which is equal to the focal length of this parabola. The directrix is returned as an axis (a gp_Ax2d object), the origin of which is situated on the ‘X Axis’ of this parabola.
Return type:gp_Ax2d
Focal()
  • Returns the distance between the vertex and the focus of the parabola.
Return type:float
Focus()
  • Returns the focus of the parabola.
Return type:gp_Pnt2d
IsDirect()
  • Returns true if the local coordinate system is direct and false in the other case.
Return type:bool
Location()
  • Returns the vertex of the parabola.
Return type:gp_Pnt2d
Mirror()
Parameters:
  • P (gp_Pnt2d) –
  • A (gp_Ax2d) –
Return type:

None

Return type:

None

MirrorAxis()
  • Returns the symmetry axis of the parabola. The ‘Location’ point of this axis is the vertex of the parabola.
Return type:gp_Ax2d
Mirrored()
  • Performs the symmetrical transformation of a parabola with respect to the point P which is the center of the symmetry
Parameters:P (gp_Pnt2d) –
Return type:gp_Parab2d
  • Performs the symmetrical transformation of a parabola with respect to an axis placement which is the axis of the symmetry.
Parameters:A (gp_Ax2d) –
Return type:gp_Parab2d
Parameter()
  • Returns the distance between the focus and the directrix of the parabola.
Return type:float
Reverse()
Return type:None
Reversed()
  • Reverses the orientation of the local coordinate system of this parabola (the ‘Y Direction’ is reversed). Therefore, the implicit orientation of this parabola is reversed. Note: - Reverse assigns the result to this parabola, while - Reversed creates a new one.
Return type:gp_Parab2d
Rotate()
Parameters:
  • P (gp_Pnt2d) –
  • Ang (float) –
Return type:

None

Rotated()
  • Rotates a parabola. P is the center of the rotation. Ang is the angular value of the rotation in radians.
Parameters:
  • P (gp_Pnt2d) –
  • Ang (float) –
Return type:

gp_Parab2d

Scale()
Parameters:
  • P (gp_Pnt2d) –
  • S (float) –
Return type:

None

Scaled()
  • Scales a parabola. S is the scaling value. If S is negative the direction of the symmetry axis ‘XAxis’ is reversed and the direction of the ‘YAxis’ too.
Parameters:
  • P (gp_Pnt2d) –
  • S (float) –
Return type:

gp_Parab2d

SetAxis()
  • Changes the local coordinate system of the parabola. The ‘Location’ point of A becomes the vertex of the parabola.
Parameters:A (gp_Ax22d) –
Return type:None
SetFocal()
  • Changes the focal distance of the parabola Warnings : It is possible to have Focal = 0. Raises ConstructionError if Focal < 0.0
Parameters:Focal (float) –
Return type:None
SetLocation()
  • Changes the ‘Location’ point of the parabola. It is the vertex of the parabola.
Parameters:P (gp_Pnt2d) –
Return type:None
SetMirrorAxis()
  • Modifies this parabola, by redefining its local coordinate system so that its origin and ‘X Direction’ become those of the axis MA. The ‘Y Direction’ of the local coordinate system is then recomputed. The orientation of the local coordinate system is not modified.
Parameters:A (gp_Ax2d) –
Return type:None
Transform()
Parameters:T (gp_Trsf2d) –
Return type:None
Transformed()
  • Transforms an parabola with the transformation T from class Trsf2d.
Parameters:T (gp_Trsf2d) –
Return type:gp_Parab2d
Translate()
Parameters:
  • V (gp_Vec2d) –
  • P1 (gp_Pnt2d) –
  • P2 (gp_Pnt2d) –
Return type:

None

Return type:

None

Translated()
  • Translates a parabola in the direction of the vector V. The magnitude of the translation is the vector’s magnitude.
Parameters:V (gp_Vec2d) –
Return type:gp_Parab2d
  • Translates a parabola from the point P1 to the point P2.
Parameters:
  • P1 (gp_Pnt2d) –
  • P2 (gp_Pnt2d) –
Return type:

gp_Parab2d

thisown

The membership flag

class OCC.gp.gp_Pln(*args)

Bases: object

Axis()
  • Returns the plane’s normal Axis.
Return type:gp_Ax1
Coefficients()
  • Returns the coefficients of the plane’s cartesian equation : A * X + B * Y + C * Z + D = 0.
Parameters:
  • A (float) –
  • B (float) –
  • C (float) –
  • D (float) –
Return type:

None

Contains()
  • Returns true if this plane contains the point P. This means that - the distance between point P and this plane is less than or equal to LinearTolerance, or - line L is normal to the ‘main Axis’ of the local coordinate system of this plane, within the tolerance AngularTolerance, and the distance between the origin of line L and this plane is less than or equal to LinearTolerance.
Parameters:
  • P (gp_Pnt) –
  • LinearTolerance (float) –
Return type:

bool

  • Returns true if this plane contains the line L. This means that - the distance between point P and this plane is less than or equal to LinearTolerance, or - line L is normal to the ‘main Axis’ of the local coordinate system of this plane, within the tolerance AngularTolerance, and the distance between the origin of line L and this plane is less than or equal to LinearTolerance.
Parameters:
  • L (gp_Lin) –
  • LinearTolerance (float) –
  • AngularTolerance (float) –
Return type:

bool

Direct()
  • returns true if the Ax3 is right handed.
Return type:bool
Distance()
  • Computes the distance between <self> and the point <P>.
Parameters:P (gp_Pnt) –
Return type:float
  • Computes the distance between <self> and the line <L>.
Parameters:L (gp_Lin) –
Return type:float
  • Computes the distance between two planes.
Parameters:Other (gp_Pln) –
Return type:float
Location()
  • Returns the plane’s location (origin).
Return type:gp_Pnt
Mirror()
Parameters:
  • P (gp_Pnt) –
  • A1 (gp_Ax1) –
  • A2 (gp_Ax2) –
Return type:

None

Return type:

None

Return type:

None

Mirrored()
  • Performs the symmetrical transformation of a plane with respect to the point <P> which is the center of the symmetry Warnings : The normal direction to the plane is not changed. The ‘XAxis’ and the ‘YAxis’ are reversed.
Parameters:P (gp_Pnt) –
Return type:gp_Pln
  • Performs the symmetrical transformation of a plane with respect to an axis placement which is the axis of the symmetry. The transformation is performed on the ‘Location’ point, on the ‘XAxis’ and the ‘YAxis’. The resulting normal direction is the cross product between the ‘XDirection’ and the ‘YDirection’ after transformation if the initial plane was right handed, else it is the opposite.
Parameters:A1 (gp_Ax1) –
Return type:gp_Pln
  • Performs the symmetrical transformation of a plane with respect to an axis placement. The axis placement <A2> locates the plane of the symmetry. The transformation is performed on the ‘Location’ point, on the ‘XAxis’ and the ‘YAxis’. The resulting normal direction is the cross product between the ‘XDirection’ and the ‘YDirection’ after transformation if the initial plane was right handed, else it is the opposite.
Parameters:A2 (gp_Ax2) –
Return type:gp_Pln
Position()
  • Returns the local coordinate system of the plane .
Return type:gp_Ax3
Rotate()
Parameters:
  • A1 (gp_Ax1) –
  • Ang (float) –
Return type:

None

Rotated()
  • rotates a plane. A1 is the axis of the rotation. Ang is the angular value of the rotation in radians.
Parameters:
  • A1 (gp_Ax1) –
  • Ang (float) –
Return type:

gp_Pln

Scale()
Parameters:
  • P (gp_Pnt) –
  • S (float) –
Return type:

None

Scaled()
  • Scales a plane. S is the scaling value.
Parameters:
  • P (gp_Pnt) –
  • S (float) –
Return type:

gp_Pln

SetAxis()
  • Modifies this plane, by redefining its local coordinate system so that - its origin and ‘main Direction’ become those of the axis A1 (the ‘X Direction’ and ‘Y Direction’ are then recomputed). Raises ConstructionError if the A1 is parallel to the ‘XAxis’ of the plane.
Parameters:A1 (gp_Ax1) –
Return type:None
SetLocation()
  • Changes the origin of the plane.
Parameters:Loc (gp_Pnt) –
Return type:None
SetPosition()
  • Changes the local coordinate system of the plane.
Parameters:A3 (gp_Ax3) –
Return type:None
SquareDistance()
  • Computes the square distance between <self> and the point <P>.
Parameters:P (gp_Pnt) –
Return type:float
  • Computes the square distance between <self> and the line <L>.
Parameters:L (gp_Lin) –
Return type:float
  • Computes the square distance between two planes.
Parameters:Other (gp_Pln) –
Return type:float
Transform()
Parameters:T (gp_Trsf) –
Return type:None
Transformed()
  • Transforms a plane with the transformation T from class Trsf. The transformation is performed on the ‘Location’ point, on the ‘XAxis’ and the ‘YAxis’. The resulting normal direction is the cross product between the ‘XDirection’ and the ‘YDirection’ after transformation.
Parameters:T (gp_Trsf) –
Return type:gp_Pln
Translate()
Parameters:
  • V (gp_Vec) –
  • P1 (gp_Pnt) –
  • P2 (gp_Pnt) –
Return type:

None

Return type:

None

Translated()
  • Translates a plane in the direction of the vector V. The magnitude of the translation is the vector’s magnitude.
Parameters:V (gp_Vec) –
Return type:gp_Pln
  • Translates a plane from the point P1 to the point P2.
Parameters:
  • P1 (gp_Pnt) –
  • P2 (gp_Pnt) –
Return type:

gp_Pln

UReverse()
  • Reverses the U parametrization of the plane reversing the XAxis.
Return type:None
VReverse()
  • Reverses the V parametrization of the plane reversing the YAxis.
Return type:None
XAxis()
  • Returns the X axis of the plane.
Return type:gp_Ax1
YAxis()
  • Returns the Y axis of the plane.
Return type:gp_Ax1
thisown

The membership flag

class OCC.gp.gp_Pnt(*args)

Bases: object

BaryCenter()
  • Assigns the result of the following expression to this point (Alpha*this + Beta*P) / (Alpha + Beta)
Parameters:
  • Alpha (float) –
  • P (gp_Pnt) –
  • Beta (float) –
Return type:

None

ChangeCoord()
  • Returns the coordinates of this point. Note: This syntax allows direct modification of the returned value.
Return type:gp_XYZ
Coord()
  • Returns the coordinate of corresponding to the value of Index : Index = 1 => X is returned Index = 2 => Y is returned Index = 3 => Z is returned Raises OutOfRange if Index != {1, 2, 3}. Raised if Index != {1, 2, 3}.
Parameters:Index (Standard_Integer) –
Return type:float
  • For this point gives its three coordinates Xp, Yp and Zp.
Parameters:
  • Xp (float) –
  • Yp (float) –
  • Zp (float) –
Return type:

None

  • For this point, returns its three coordinates as a XYZ object.
Return type:gp_XYZ
Distance()
  • Computes the distance between two points.
Parameters:Other (gp_Pnt) –
Return type:float
IsEqual()
  • Comparison Returns True if the distance between the two points is lower or equal to LinearTolerance.
Parameters:
  • Other (gp_Pnt) –
  • LinearTolerance (float) –
Return type:

bool

Mirror()
  • Performs the symmetrical transformation of a point with respect to the point P which is the center of the symmetry.
Parameters:
  • P (gp_Pnt) –
  • A1 (gp_Ax1) –
  • A2 (gp_Ax2) –
Return type:

None

Return type:

None

Return type:

None

Mirrored()
  • Performs the symmetrical transformation of a point with respect to an axis placement which is the axis of the symmetry.
Parameters:P (gp_Pnt) –
Return type:gp_Pnt
  • Performs the symmetrical transformation of a point with respect to a plane. The axis placement A2 locates the plane of the symmetry : (Location, XDirection, YDirection).
Parameters:A1 (gp_Ax1) –
Return type:gp_Pnt
  • Rotates a point. A1 is the axis of the rotation. Ang is the angular value of the rotation in radians.
Parameters:A2 (gp_Ax2) –
Return type:gp_Pnt
Rotate()
Parameters:
  • A1 (gp_Ax1) –
  • Ang (float) –
Return type:

None

Rotated()
  • Scales a point. S is the scaling value.
Parameters:
  • A1 (gp_Ax1) –
  • Ang (float) –
Return type:

gp_Pnt

Scale()
Parameters:
  • P (gp_Pnt) –
  • S (float) –
Return type:

None

Scaled()
  • Transforms a point with the transformation T.
Parameters:
  • P (gp_Pnt) –
  • S (float) –
Return type:

gp_Pnt

SetCoord()
  • Changes the coordinate of range Index : Index = 1 => X is modified Index = 2 => Y is modified Index = 3 => Z is modified Raised if Index != {1, 2, 3}.
Parameters:
  • Index (Standard_Integer) –
  • Xi (float) –
Return type:

None

  • For this point, assigns the values Xp, Yp and Zp to its three coordinates.
Parameters:
  • Xp (float) –
  • Yp (float) –
  • Zp (float) –
Return type:

None

SetX()
  • Assigns the given value to the X coordinate of this point.
Parameters:X (float) –
Return type:None
SetXYZ()
  • Assigns the three coordinates of Coord to this point.
Parameters:Coord (gp_XYZ) –
Return type:None
SetY()
  • Assigns the given value to the Y coordinate of this point.
Parameters:Y (float) –
Return type:None
SetZ()
  • Assigns the given value to the Z coordinate of this point.
Parameters:Z (float) –
Return type:None
SquareDistance()
  • Computes the square distance between two points.
Parameters:Other (gp_Pnt) –
Return type:float
Transform()
Parameters:T (gp_Trsf) –
Return type:None
Transformed()
  • Translates a point in the direction of the vector V. The magnitude of the translation is the vector’s magnitude.
Parameters:T (gp_Trsf) –
Return type:gp_Pnt
Translate()
Parameters:
  • V (gp_Vec) –
  • P1 (gp_Pnt) –
  • P2 (gp_Pnt) –
Return type:

None

Return type:

None

Translated()
  • Translates a point from the point P1 to the point P2.
Parameters:
  • V (gp_Vec) –
  • P1 (gp_Pnt) –
  • P2 (gp_Pnt) –
Return type:

gp_Pnt

Return type:

gp_Pnt

X()
  • For this point, returns its X coordinate.
Return type:float
XYZ()
  • For this point, returns its three coordinates as a XYZ object.
Return type:gp_XYZ
Y()
  • For this point, returns its Y coordinate.
Return type:float
Z()
  • For this point, returns its Z coordinate.
Return type:float
thisown

The membership flag

class OCC.gp.gp_Pnt2d(*args)

Bases: object

ChangeCoord()
  • Returns the coordinates of this point. Note: This syntax allows direct modification of the returned value.
Return type:gp_XY
Coord()
  • Returns the coordinate of range Index : Index = 1 => X is returned Index = 2 => Y is returned Raises OutOfRange if Index != {1, 2}.
Parameters:Index (Standard_Integer) –
Return type:float
  • For this point returns its two coordinates as a number pair.
Parameters:
  • Xp (float) –
  • Yp (float) –
Return type:

None

  • For this point, returns its two coordinates as a number pair.
Return type:gp_XY
Distance()
  • Computes the distance between two points.
Parameters:Other (gp_Pnt2d) –
Return type:float
IsEqual()
  • Comparison Returns True if the distance between the two points is lower or equal to LinearTolerance.
Parameters:
  • Other (gp_Pnt2d) –
  • LinearTolerance (float) –
Return type:

bool

Mirror()
  • Performs the symmetrical transformation of a point with respect to the point P which is the center of the symmetry.
Parameters:
  • P (gp_Pnt2d) –
  • A (gp_Ax2d) –
Return type:

None

Return type:

None

Mirrored()
  • Performs the symmetrical transformation of a point with respect to an axis placement which is the axis
Parameters:P (gp_Pnt2d) –
Return type:gp_Pnt2d
  • Rotates a point. A1 is the axis of the rotation. Ang is the angular value of the rotation in radians.
Parameters:A (gp_Ax2d) –
Return type:gp_Pnt2d
Rotate()
Parameters:
  • P (gp_Pnt2d) –
  • Ang (float) –
Return type:

None

Rotated()
  • Scales a point. S is the scaling value.
Parameters:
  • P (gp_Pnt2d) –
  • Ang (float) –
Return type:

gp_Pnt2d

Scale()
Parameters:
  • P (gp_Pnt2d) –
  • S (float) –
Return type:

None

Scaled()
  • Transforms a point with the transformation T.
Parameters:
  • P (gp_Pnt2d) –
  • S (float) –
Return type:

gp_Pnt2d

SetCoord()
  • Assigns the value Xi to the coordinate that corresponds to Index: Index = 1 => X is modified Index = 2 => Y is modified Raises OutOfRange if Index != {1, 2}.
Parameters:
  • Index (Standard_Integer) –
  • Xi (float) –
Return type:

None

  • For this point, assigns the values Xp and Yp to its two coordinates
Parameters:
  • Xp (float) –
  • Yp (float) –
Return type:

None

SetX()
  • Assigns the given value to the X coordinate of this point.
Parameters:X (float) –
Return type:None
SetXY()
  • Assigns the two coordinates of Coord to this point.
Parameters:Coord (gp_XY) –
Return type:None
SetY()
  • Assigns the given value to the Y coordinate of this point.
Parameters:Y (float) –
Return type:None
SquareDistance()
  • Computes the square distance between two points.
Parameters:Other (gp_Pnt2d) –
Return type:float
Transform()
Parameters:T (gp_Trsf2d) –
Return type:None
Transformed()
  • Translates a point in the direction of the vector V. The magnitude of the translation is the vector’s magnitude.
Parameters:T (gp_Trsf2d) –
Return type:gp_Pnt2d
Translate()
Parameters:
  • V (gp_Vec2d) –
  • P1 (gp_Pnt2d) –
  • P2 (gp_Pnt2d) –
Return type:

None

Return type:

None

Translated()
  • Translates a point from the point P1 to the point P2.
Parameters:
  • V (gp_Vec2d) –
  • P1 (gp_Pnt2d) –
  • P2 (gp_Pnt2d) –
Return type:

gp_Pnt2d

Return type:

gp_Pnt2d

X()
  • For this point, returns its X coordinate.
Return type:float
XY()
  • For this point, returns its two coordinates as a number pair.
Return type:gp_XY
Y()
  • For this point, returns its Y coordinate.
Return type:float
thisown

The membership flag

class OCC.gp.gp_Quaternion(*args)

Bases: object

Add()
  • Adds componnets of other quaternion; result is ‘rotations mix’
Parameters:theOther (gp_Quaternion) –
Return type:None
Added()
  • Makes sum of quaternion components; result is ‘rotations mix’
Parameters:theOther (gp_Quaternion) –
Return type:gp_Quaternion
Dot()
  • Computes inner product / scalar product / Dot
Parameters:theOther (gp_Quaternion) –
Return type:float
GetEulerAngles()
  • Returns Euler angles describing current rotation
Parameters:
  • theOrder (gp_EulerSequence) –
  • theAlpha (float) –
  • theBeta (float) –
  • theGamma (float) –
Return type:

None

GetMatrix()
  • Returns rotation operation as 3*3 matrix
Return type:gp_Mat
GetRotationAngle()
  • Return rotation angle from -PI to PI
Return type:float
GetVectorAndAngle()
  • Convert a quaternion to Axis+Angle representation, preserve the axis direction and angle from -PI to +PI
Parameters:
  • theAxis (gp_Vec) –
  • theAngle (float) –
Return type:

None

Invert()
  • Inverts quaternion (both rotation direction and norm)
Return type:None
Inverted()
  • Return inversed quaternion q^-1
Return type:gp_Quaternion
IsEqual()
  • Simple equal test without precision
Parameters:theOther (gp_Quaternion) –
Return type:bool
Multiplied()
  • Multiply function - work the same as Matrices multiplying. qq’ = (cross(v,v’) + wv’ + w’v, ww’ - dot(v,v’)) Result is rotation combination: q’ than q (here q=this, q’=theQ). Notices than: qq’ != q’q; qq^-1 = q;
Parameters:theOther (gp_Quaternion) –
Return type:gp_Quaternion
Multiply()
  • Adds rotation by multiplication
Parameters:theOther (gp_Quaternion) –
Return type:None
  • Rotates vector by quaternion as rotation operator
Parameters:theVec (gp_Vec) –
Return type:gp_Vec
Negated()
  • Returns quaternion with all components negated. Note that this operation does not affect neither rotation operator defined by quaternion nor its norm.
Return type:gp_Quaternion
Norm()
  • Returns norm of quaternion
Return type:float
Normalize()
  • Scale quaternion that its norm goes to 1. The appearing of 0 magnitude or near is a error, so we can be sure that can divide by magnitude
Return type:None
Normalized()
  • Returns quaternion scaled so that its norm goes to 1.
Return type:gp_Quaternion
Reverse()
  • Reverse direction of rotation (conjugate quaternion)
Return type:None
Reversed()
  • Return rotation with reversed direction (conjugated quaternion)
Return type:gp_Quaternion
Scale()
  • Scale all components by quaternion by theScale; note that rotation is not changed by this operation (except 0-scaling)
Parameters:theScale (float) –
Return type:None
Scaled()
  • Returns scaled quaternion
Parameters:theScale (float) –
Return type:gp_Quaternion
Set()
Parameters:
  • x (float) –
  • y (float) –
  • z (float) –
  • w (float) –
  • theQuaternion (gp_Quaternion) –
Return type:

None

Return type:

None

SetEulerAngles()
  • Create a unit quaternion representing rotation defined by generalized Euler angles
Parameters:
  • theOrder (gp_EulerSequence) –
  • theAlpha (float) –
  • theBeta (float) –
  • theGamma (float) –
Return type:

None

SetIdent()
  • Make identity quaternion (zero-rotation)
Return type:None
SetMatrix()
  • Create a unit quaternion by rotation matrix matrix must contain only rotation (not scale or shear) For numerical stability we find first the greatest component of quaternion and than search others from this one
Parameters:theMat (gp_Mat) –
Return type:None
SetRotation()
  • Sets quaternion to shortest-arc rotation producing vector theVecTo from vector theVecFrom. If vectors theVecFrom and theVecTo are opposite then rotation axis is computed as theVecFrom ^ (1,0,0) or theVecFrom ^ (0,0,1).
Parameters:
  • theVecFrom (gp_Vec) –
  • theVecTo (gp_Vec) –
Return type:

None

  • Sets quaternion to shortest-arc rotation producing vector theVecTo from vector theVecFrom. If vectors theVecFrom and theVecTo are opposite then rotation axis is computed as theVecFrom ^ theHelpCrossVec.
Parameters:
  • theVecFrom (gp_Vec) –
  • theVecTo (gp_Vec) –
  • theHelpCrossVec (gp_Vec) –
Return type:

None

SetVectorAndAngle()
  • Create a unit quaternion from Axis+Angle representation
Parameters:
  • theAxis (gp_Vec) –
  • theAngle (float) –
Return type:

None

SquareNorm()
  • Returns square norm of quaternion
Return type:float
StabilizeLength()
  • Stabilize quaternion length within 1 - 1/4. This operation is a lot faster than normalization and preserve length goes to 0 or infinity
Return type:None
Subtract()
  • Subtracts componnets of other quaternion; result is ‘rotations mix’
Parameters:theOther (gp_Quaternion) –
Return type:None
Subtracted()
  • Makes difference of quaternion components; result is ‘rotations mix’
Parameters:theOther (gp_Quaternion) –
Return type:gp_Quaternion
W()
Return type:float
X()
Return type:float
Y()
Return type:float
Z()
Return type:float
thisown

The membership flag

class OCC.gp.gp_QuaternionNLerp(*args)

Bases: object

Init()
Parameters:
  • theQStart (gp_Quaternion) –
  • theQEnd (gp_Quaternion) –
Return type:

None

InitFromUnit()
Parameters:
  • theQStart (gp_Quaternion) –
  • theQEnd (gp_Quaternion) –
Return type:

None

static Interpolate(*args)
  • Set interpolated quaternion for theT position (from 0.0 to 1.0)
Parameters:
  • theT (float) –
  • theResultQ (gp_Quaternion) –
  • theQStart (gp_Quaternion) –
  • theQEnd (gp_Quaternion) –
  • theT
Return type:

None

Return type:

gp_Quaternion

thisown

The membership flag

OCC.gp.gp_QuaternionNLerp_Interpolate(*args)
  • Set interpolated quaternion for theT position (from 0.0 to 1.0)
Parameters:
  • theT (float) –
  • theResultQ (gp_Quaternion) –
  • theQStart (gp_Quaternion) –
  • theQEnd (gp_Quaternion) –
  • theT
Return type:

None

Return type:

gp_Quaternion

class OCC.gp.gp_QuaternionSLerp(*args)

Bases: object

Init()
Parameters:
  • theQStart (gp_Quaternion) –
  • theQEnd (gp_Quaternion) –
Return type:

None

InitFromUnit()
Parameters:
  • theQStart (gp_Quaternion) –
  • theQEnd (gp_Quaternion) –
Return type:

None

Interpolate()
  • Set interpolated quaternion for theT position (from 0.0 to 1.0)
Parameters:
  • theT (float) –
  • theResultQ (gp_Quaternion) –
Return type:

None

thisown

The membership flag

OCC.gp.gp_Resolution()
  • Parabola. Method of package gp In geometric computations, defines the tolerance criterion used to determine when two numbers can be considered equal. Many class functions use this tolerance criterion, for example, to avoid division by zero in geometric computations. In the documentation, tolerance criterion is always referred to as gp::Resolution().
Return type:float
class OCC.gp.gp_Sphere(*args)

Bases: object

Area()
  • Computes the aera of the sphere.
Return type:float
Coefficients()
  • Computes the coefficients of the implicit equation of the quadric in the absolute cartesian coordinates system : A1.X**2 + A2.Y**2 + A3.Z**2 + 2.(B1.X.Y + B2.X.Z + B3.Y.Z) + 2.(C1.X + C2.Y + C3.Z) + D = 0.0
Parameters:
  • A1 (float) –
  • A2 (float) –
  • A3 (float) –
  • B1 (float) –
  • B2 (float) –
  • B3 (float) –
  • C1 (float) –
  • C2 (float) –
  • C3 (float) –
  • D (float) –
Return type:

None

Direct()
  • Returns true if the local coordinate system of this sphere is right-handed.
Return type:bool
Location()
  • //!— Purpose ; Returns the center of the sphere.
Return type:gp_Pnt
Mirror()
Parameters:
  • P (gp_Pnt) –
  • A1 (gp_Ax1) –
  • A2 (gp_Ax2) –
Return type:

None

Return type:

None

Return type:

None

Mirrored()
  • Performs the symmetrical transformation of a sphere with respect to the point P which is the center of the symmetry.
Parameters:P (gp_Pnt) –
Return type:gp_Sphere
  • Performs the symmetrical transformation of a sphere with respect to an axis placement which is the axis of the symmetry.
Parameters:A1 (gp_Ax1) –
Return type:gp_Sphere
  • Performs the symmetrical transformation of a sphere with respect to a plane. The axis placement A2 locates the plane of the of the symmetry : (Location, XDirection, YDirection).
Parameters:A2 (gp_Ax2) –
Return type:gp_Sphere
Position()
  • Returns the local coordinates system of the sphere.
Return type:gp_Ax3
Radius()
  • Returns the radius of the sphere.
Return type:float
Rotate()
Parameters:
  • A1 (gp_Ax1) –
  • Ang (float) –
Return type:

None

Rotated()
  • Rotates a sphere. A1 is the axis of the rotation. Ang is the angular value of the rotation in radians.
Parameters:
  • A1 (gp_Ax1) –
  • Ang (float) –
Return type:

gp_Sphere

Scale()
Parameters:
  • P (gp_Pnt) –
  • S (float) –
Return type:

None

Scaled()
  • Scales a sphere. S is the scaling value. The absolute value of S is used to scale the sphere
Parameters:
  • P (gp_Pnt) –
  • S (float) –
Return type:

gp_Sphere

SetLocation()
  • Changes the center of the sphere.
Parameters:Loc (gp_Pnt) –
Return type:None
SetPosition()
  • Changes the local coordinate system of the sphere.
Parameters:A3 (gp_Ax3) –
Return type:None
SetRadius()
  • Assigns R the radius of the Sphere. Warnings : It is not forbidden to create a sphere with null radius. Raises ConstructionError if R < 0.0
Parameters:R (float) –
Return type:None
Transform()
Parameters:T (gp_Trsf) –
Return type:None
Transformed()
  • Transforms a sphere with the transformation T from class Trsf.
Parameters:T (gp_Trsf) –
Return type:gp_Sphere
Translate()
Parameters:
  • V (gp_Vec) –
  • P1 (gp_Pnt) –
  • P2 (gp_Pnt) –
Return type:

None

Return type:

None

Translated()
  • Translates a sphere in the direction of the vector V. The magnitude of the translation is the vector’s magnitude.
Parameters:V (gp_Vec) –
Return type:gp_Sphere
  • Translates a sphere from the point P1 to the point P2.
Parameters:
  • P1 (gp_Pnt) –
  • P2 (gp_Pnt) –
Return type:

gp_Sphere

UReverse()
  • Reverses the U parametrization of the sphere reversing the YAxis.
Return type:None
VReverse()
  • Reverses the V parametrization of the sphere reversing the ZAxis.
Return type:None
Volume()
  • Computes the volume of the sphere
Return type:float
XAxis()
  • Returns the axis X of the sphere.
Return type:gp_Ax1
YAxis()
  • Returns the axis Y of the sphere.
Return type:gp_Ax1
thisown

The membership flag

class OCC.gp.gp_Torus(*args)

Bases: object

Area()
  • Computes the area of the torus.
Return type:float
Axis()
  • returns the symmetry axis of the torus.
Return type:gp_Ax1
Direct()
  • returns true if the Ax3, the local coordinate system of this torus, is right handed.
Return type:bool
Location()
  • Returns the Torus’s location.
Return type:gp_Pnt
MajorRadius()
  • returns the major radius of the torus.
Return type:float
MinorRadius()
  • returns the minor radius of the torus.
Return type:float
Mirror()
Parameters:
  • P (gp_Pnt) –
  • A1 (gp_Ax1) –
  • A2 (gp_Ax2) –
Return type:

None

Return type:

None

Return type:

None

Mirrored()
  • Performs the symmetrical transformation of a torus with respect to the point P which is the center of the symmetry.
Parameters:P (gp_Pnt) –
Return type:gp_Torus
  • Performs the symmetrical transformation of a torus with respect to an axis placement which is the axis of the symmetry.
Parameters:A1 (gp_Ax1) –
Return type:gp_Torus
  • Performs the symmetrical transformation of a torus with respect to a plane. The axis placement A2 locates the plane of the of the symmetry : (Location, XDirection, YDirection).
Parameters:A2 (gp_Ax2) –
Return type:gp_Torus
Position()
  • Returns the local coordinates system of the torus.
Return type:gp_Ax3
Rotate()
Parameters:
  • A1 (gp_Ax1) –
  • Ang (float) –
Return type:

None

Rotated()
  • Rotates a torus. A1 is the axis of the rotation. Ang is the angular value of the rotation in radians.
Parameters:
  • A1 (gp_Ax1) –
  • Ang (float) –
Return type:

gp_Torus

Scale()
Parameters:
  • P (gp_Pnt) –
  • S (float) –
Return type:

None

Scaled()
  • Scales a torus. S is the scaling value. The absolute value of S is used to scale the torus
Parameters:
  • P (gp_Pnt) –
  • S (float) –
Return type:

gp_Torus

SetAxis()
  • Modifies this torus, by redefining its local coordinate system so that: - its origin and ‘main Direction’ become those of the axis A1 (the ‘X Direction’ and ‘Y Direction’ are then recomputed). Raises ConstructionError if the direction of A1 is parallel to the ‘XDirection’ of the coordinate system of the toroidal surface.
Parameters:A1 (gp_Ax1) –
Return type:None
SetLocation()
  • Changes the location of the torus.
Parameters:Loc (gp_Pnt) –
Return type:None
SetMajorRadius()
  • Assigns value to the major radius of this torus. Raises ConstructionError if MajorRadius - MinorRadius <= Resolution()
Parameters:MajorRadius (float) –
Return type:None
SetMinorRadius()
  • Assigns value to the minor radius of this torus. Raises ConstructionError if MinorRadius < 0.0 or if MajorRadius - MinorRadius <= Resolution from gp.
Parameters:MinorRadius (float) –
Return type:None
SetPosition()
  • Changes the local coordinate system of the surface.
Parameters:A3 (gp_Ax3) –
Return type:None
Transform()
Parameters:T (gp_Trsf) –
Return type:None
Transformed()
  • Transforms a torus with the transformation T from class Trsf.
Parameters:T (gp_Trsf) –
Return type:gp_Torus
Translate()
Parameters:
  • V (gp_Vec) –
  • P1 (gp_Pnt) –
  • P2 (gp_Pnt) –
Return type:

None

Return type:

None

Translated()
  • Translates a torus in the direction of the vector V. The magnitude of the translation is the vector’s magnitude.
Parameters:V (gp_Vec) –
Return type:gp_Torus
  • Translates a torus from the point P1 to the point P2.
Parameters:
  • P1 (gp_Pnt) –
  • P2 (gp_Pnt) –
Return type:

gp_Torus

UReverse()
  • Reverses the U parametrization of the torus reversing the YAxis.
Return type:None
VReverse()
  • Reverses the V parametrization of the torus reversing the ZAxis.
Return type:None
Volume()
  • Computes the volume of the torus.
Return type:float
XAxis()
  • returns the axis X of the torus.
Return type:gp_Ax1
YAxis()
  • returns the axis Y of the torus.
Return type:gp_Ax1
thisown

The membership flag

class OCC.gp.gp_Trsf(*args)

Bases: object

Form()
  • Returns the nature of the transformation. It can be: an identity transformation, a rotation, a translation, a mirror transformation (relative to a point, an axis or a plane), a scaling transformation, or a compound transformation.
Return type:gp_TrsfForm
GetRotation()
  • Returns the boolean True if there is non-zero rotation. In the presence of rotation, the output parameters store the axis and the angle of rotation. The method always returns positive value ‘theAngle’, i.e., 0. < theAngle <= PI. Note that this rotation is defined only by the vectorial part of the transformation; generally you would need to check also the translational part to obtain the axis (gp_Ax1) of rotation.
Parameters:
  • theAxis (gp_XYZ) –
  • theAngle (float) –
Return type:

bool

  • Returns quaternion representing rotational part of the transformation.
Return type:gp_Quaternion
HVectorialPart()
  • Computes the homogeneous vectorial part of the transformation. It is a 3*3 matrix which doesn’t include the scale factor. In other words, the vectorial part of this transformation is equal to its homogeneous vectorial part, multiplied by the scale factor. The coefficients of this matrix must be multiplied by the scale factor to obtain the coefficients of the transformation.
Return type:gp_Mat
Invert()
Return type:None
Inverted()
  • Computes the reverse transformation Raises an exception if the matrix of the transformation is not inversible, it means that the scale factor is lower or equal to Resolution from package gp. Computes the transformation composed with T and <self>. In a C++ implementation you can also write Tcomposed = <self> * T. Example : Trsf T1, T2, Tcomp; ............... Tcomp = T2.Multiplied(T1); // or (Tcomp = T2 * T1) Pnt P1(10.,3.,4.); Pnt P2 = P1.Transformed(Tcomp); //using Tcomp Pnt P3 = P1.Transformed(T1); //using T1 then T2 P3.Transform(T2); // P3 = P2 !!!
Return type:gp_Trsf
IsNegative()
  • Returns true if the determinant of the vectorial part of this transformation is negative.
Return type:bool
Multiplied()
Parameters:T (gp_Trsf) –
Return type:gp_Trsf
Multiply()
  • Computes the transformation composed with T and <self>. In a C++ implementation you can also write Tcomposed = <self> * T. Example : Trsf T1, T2, Tcomp; ............... //composition : Tcomp = T2.Multiplied(T1); // or (Tcomp = T2 * T1) // transformation of a point Pnt P1(10.,3.,4.); Pnt P2 = P1.Transformed(Tcomp); //using Tcomp Pnt P3 = P1.Transformed(T1); //using T1 then T2 P3.Transform(T2); // P3 = P2 !!! Computes the transformation composed with <self> and T. <self> = T * <self>
Parameters:T (gp_Trsf) –
Return type:None
Power()
Parameters:N (Standard_Integer) –
Return type:None
Powered()
  • Computes the following composition of transformations <self> * <self> * .......* <self>, N time. if N = 0 <self> = Identity if N < 0 <self> = <self>.Inverse() ........... <self>.Inverse(). Raises if N < 0 and if the matrix of the transformation not inversible.
Parameters:N (Standard_Integer) –
Return type:gp_Trsf
PreMultiply()
  • Computes the transformation composed with <self> and T. <self> = T * <self>
Parameters:T (gp_Trsf) –
Return type:None
ScaleFactor()
  • Returns the scale factor.
Return type:float
SetDisplacement()
  • Modifies this transformation so that it transforms the coordinate system defined by FromSystem1 into the one defined by ToSystem2. After this modification, this transformation transforms: - the origin of FromSystem1 into the origin of ToSystem2, - the ‘X Direction’ of FromSystem1 into the ‘X Direction’ of ToSystem2, - the ‘Y Direction’ of FromSystem1 into the ‘Y Direction’ of ToSystem2, and - the ‘main Direction’ of FromSystem1 into the ‘main Direction’ of ToSystem2. Warning When you know the coordinates of a point in one coordinate system and you want to express these coordinates in another one, do not use the transformation resulting from this function. Use the transformation that results from SetTransformation instead. SetDisplacement and SetTransformation create related transformations: the vectorial part of one is the inverse of the vectorial part of the other.
Parameters:
  • FromSystem1 (gp_Ax3) –
  • ToSystem2 (gp_Ax3) –
Return type:

None

SetMirror()
  • Makes the transformation into a symmetrical transformation. P is the center of the symmetry.
Parameters:P (gp_Pnt) –
Return type:None
  • Makes the transformation into a symmetrical transformation. A1 is the center of the axial symmetry.
Parameters:A1 (gp_Ax1) –
Return type:None
  • Makes the transformation into a symmetrical transformation. A2 is the center of the planar symmetry and defines the plane of symmetry by its origin, ‘X Direction’ and ‘Y Direction’.
Parameters:A2 (gp_Ax2) –
Return type:None
SetRotation()
  • Changes the transformation into a rotation. A1 is the rotation axis and Ang is the angular value of the rotation in radians.
Parameters:
  • A1 (gp_Ax1) –
  • Ang (float) –
Return type:

None

  • Changes the transformation into a rotation defined by quaternion. Note that rotation is performed around origin, i.e. no translation is involved.
Parameters:R (gp_Quaternion) –
Return type:None
SetScale()
  • Changes the transformation into a scale. P is the center of the scale and S is the scaling value. Raises ConstructionError If <S> is null.
Parameters:
  • P (gp_Pnt) –
  • S (float) –
Return type:

None

SetScaleFactor()
  • Modifies the scale factor. Raises ConstructionError If S is null.
Parameters:S (float) –
Return type:None
SetTransformation()
  • Modifies this transformation so that it transforms the coordinates of any point, (x, y, z), relative to a source coordinate system into the coordinates (x’, y’, z’) which are relative to a target coordinate system, but which represent the same point The transformation is from the coordinate system ‘FromSystem1’ to the coordinate system ‘ToSystem2’. Example : In a C++ implementation : Real x1, y1, z1; // are the coordinates of a point in the // local system FromSystem1 Real x2, y2, z2; // are the coordinates of a point in the // local system ToSystem2 gp_Pnt P1 (x1, y1, z1) Trsf T; T.SetTransformation (FromSystem1, ToSystem2); gp_Pnt P2 = P1.Transformed (T); P2.Coord (x2, y2, z2);
Parameters:
  • FromSystem1 (gp_Ax3) –
  • ToSystem2 (gp_Ax3) –
Return type:

None

  • Modifies this transformation so that it transforms the coordinates of any point, (x, y, z), relative to a source coordinate system into the coordinates (x’, y’, z’) which are relative to a target coordinate system, but which represent the same point The transformation is from the default coordinate system {P(0.,0.,0.), VX (1.,0.,0.), VY (0.,1.,0.), VZ (0., 0. ,1.) } to the local coordinate system defined with the Ax3 ToSystem. Use in the same way as the previous method. FromSystem1 is defaulted to the absolute coordinate system.
Parameters:ToSystem (gp_Ax3) –
Return type:None
  • Sets transformation by directly specified rotation and translation.
Parameters:
  • R (gp_Quaternion) –
  • T (gp_Vec) –
Return type:

None

SetTranslation()
  • Changes the transformation into a translation. V is the vector of the translation.
Parameters:V (gp_Vec) –
Return type:None
  • Makes the transformation into a translation where the translation vector is the vector (P1, P2) defined from point P1 to point P2.
Parameters:
  • P1 (gp_Pnt) –
  • P2 (gp_Pnt) –
Return type:

None

SetTranslationPart()
  • Replaces the translation vector with the vector V.
Parameters:V (gp_Vec) –
Return type:None
SetValues()
  • Sets the coefficients of the transformation. The transformation of the point x,y,z is the point x’,y’,z’ with : x’ = a11 x + a12 y + a13 z + a14 y’ = a21 x + a22 y + a23 z + a24 z’ = a31 x + a32 y + a43 z + a34 Tolang and TolDist are used to test for null angles and null distances to determine the form of the transformation (identity, translation, etc..). The method Value(i,j) will return aij. Raises ConstructionError if the determinant of the aij is null. Or if the matrix as not a uniform scale.
Parameters:
  • a11 (float) –
  • a12 (float) –
  • a13 (float) –
  • a14 (float) –
  • a21 (float) –
  • a22 (float) –
  • a23 (float) –
  • a24 (float) –
  • a31 (float) –
  • a32 (float) –
  • a33 (float) –
  • a34 (float) –
  • Tolang (float) –
  • TolDist (float) –
Return type:

None

Transforms()
Parameters:
  • X (float) –
  • Y (float) –
  • Z (float) –
Return type:

None

  • Transformation of a triplet XYZ with a Trsf
Parameters:Coord (gp_XYZ) –
Return type:None
TranslationPart()
  • Returns the translation part of the transformation’s matrix
Return type:gp_XYZ
Value()
  • Returns the coefficients of the transformation’s matrix. It is a 3 rows * 4 columns matrix. This coefficient includes the scale factor. Raises OutOfRanged if Row < 1 or Row > 3 or Col < 1 or Col > 4
Parameters:
  • Row (Standard_Integer) –
  • Col (Standard_Integer) –
Return type:

float

VectorialPart()
  • Returns the vectorial part of the transformation. It is a 3*3 matrix which includes the scale factor.
Return type:gp_Mat
thisown

The membership flag

class OCC.gp.gp_Trsf2d(*args)

Bases: object

Form()
  • Returns the nature of the transformation. It can be an identity transformation, a rotation, a translation, a mirror (relative to a point or an axis), a scaling transformation, or a compound transformation.
Return type:gp_TrsfForm
HVectorialPart()
  • Returns the homogeneous vectorial part of the transformation. It is a 2*2 matrix which doesn’t include the scale factor. The coefficients of this matrix must be multiplied by the scale factor to obtain the coefficients of the transformation.
Return type:gp_Mat2d
Invert()
Return type:None
Inverted()
  • Computes the reverse transformation. Raises an exception if the matrix of the transformation is not inversible, it means that the scale factor is lower or equal to Resolution from package gp.
Return type:gp_Trsf2d
IsNegative()
  • Returns true if the determinant of the vectorial part of this transformation is negative..
Return type:bool
Multiplied()
Parameters:T (gp_Trsf2d) –
Return type:gp_Trsf2d
Multiply()
  • Computes the transformation composed from <T> and <self>. In a C++ implementation you can also write Tcomposed = <self> * T. Example : Trsf2d T1, T2, Tcomp; ............... //composition : Tcomp = T2.Multiplied(T1); // or (Tcomp = T2 * T1) // transformation of a point Pnt2d P1(10.,3.,4.); Pnt2d P2 = P1.Transformed(Tcomp); //using Tcomp Pnt2d P3 = P1.Transformed(T1); //using T1 then T2 P3.Transform(T2); // P3 = P2 !!!
Parameters:T (gp_Trsf2d) –
Return type:None
Power()
Parameters:N (Standard_Integer) –
Return type:None
Powered()
  • Computes the following composition of transformations <self> * <self> * .......* <self>, N time. if N = 0 <self> = Identity if N < 0 <self> = <self>.Inverse() ........... <self>.Inverse(). Raises if N < 0 and if the matrix of the transformation not inversible.
Parameters:N (Standard_Integer) –
Return type:gp_Trsf2d
PreMultiply()
  • Computes the transformation composed from <self> and T. <self> = T * <self>
Parameters:T (gp_Trsf2d) –
Return type:None
RotationPart()
  • Returns the angle corresponding to the rotational component of the transformation matrix (operation opposite to SetRotation()).
Return type:float
ScaleFactor()
  • Returns the scale factor.
Return type:float
SetMirror()
  • Changes the transformation into a symmetrical transformation. P is the center of the symmetry.
Parameters:P (gp_Pnt2d) –
Return type:None
  • Changes the transformation into a symmetrical transformation. A is the center of the axial symmetry.
Parameters:A (gp_Ax2d) –
Return type:None
SetRotation()
  • Changes the transformation into a rotation. P is the rotation’s center and Ang is the angular value of the rotation in radian.
Parameters:
  • P (gp_Pnt2d) –
  • Ang (float) –
Return type:

None

SetScale()
  • Changes the transformation into a scale. P is the center of the scale and S is the scaling value.
Parameters:
  • P (gp_Pnt2d) –
  • S (float) –
Return type:

None

SetScaleFactor()
  • Modifies the scale factor.
Parameters:S (float) –
Return type:None
SetTransformation()
  • Changes a transformation allowing passage from the coordinate system ‘FromSystem1’ to the coordinate system ‘ToSystem2’.
Parameters:
  • FromSystem1 (gp_Ax2d) –
  • ToSystem2 (gp_Ax2d) –
Return type:

None

  • Changes the transformation allowing passage from the basic coordinate system {P(0.,0.,0.), VX (1.,0.,0.), VY (0.,1.,0.)} to the local coordinate system defined with the Ax2d ToSystem.
Parameters:ToSystem (gp_Ax2d) –
Return type:None
SetTranslation()
  • Changes the transformation into a translation. V is the vector of the translation.
Parameters:V (gp_Vec2d) –
Return type:None
  • Makes the transformation into a translation from the point P1 to the point P2.
Parameters:
  • P1 (gp_Pnt2d) –
  • P2 (gp_Pnt2d) –
Return type:

None

SetTranslationPart()
  • Replaces the translation vector with V.
Parameters:V (gp_Vec2d) –
Return type:None
Transforms()
Parameters:
  • X (float) –
  • Y (float) –
Return type:

None

  • Transforms a doublet XY with a Trsf2d
Parameters:Coord (gp_XY) –
Return type:None
TranslationPart()
  • Returns the translation part of the transformation’s matrix
Return type:gp_XY
Value()
  • Returns the coefficients of the transformation’s matrix. It is a 2 rows * 3 columns matrix. Raises OutOfRange if Row < 1 or Row > 2 or Col < 1 or Col > 3
Parameters:
  • Row (Standard_Integer) –
  • Col (Standard_Integer) –
Return type:

float

VectorialPart()
  • Returns the vectorial part of the transformation. It is a 2*2 matrix which includes the scale factor.
Return type:gp_Mat2d
thisown

The membership flag

class OCC.gp.gp_Vec(*args)

Bases: object

Add()
Parameters:Other (gp_Vec) –
Return type:None
Added()
  • Adds two vectors Subtracts two vectors
Parameters:Other (gp_Vec) –
Return type:gp_Vec
Angle()
  • Computes the angular value between <self> and <Other> Returns the angle value between 0 and PI in radian. Raises VectorWithNullMagnitude if <self>.Magnitude() <= Resolution from gp or Other.Magnitude() <= Resolution because the angular value is indefinite if one of the vectors has a null magnitude.
Parameters:Other (gp_Vec) –
Return type:float
AngleWithRef()
  • Computes the angle, in radians, between this vector and vector Other. The result is a value between -Pi and Pi. For this, VRef defines the positive sense of rotation: the angular value is positive, if the cross product this ^ Other has the same orientation as VRef relative to the plane defined by the vectors this and Other. Otherwise, the angular value is negative. Exceptions gp_VectorWithNullMagnitude if the magnitude of this vector, the vector Other, or the vector VRef is less than or equal to gp::Resolution(). Standard_DomainError if this vector, the vector Other, and the vector VRef are coplanar, unless this vector and the vector Other are parallel.
Parameters:
  • Other (gp_Vec) –
  • VRef (gp_Vec) –
Return type:

float

Coord()
  • Returns the coordinate of range Index : Index = 1 => X is returned Index = 2 => Y is returned Index = 3 => Z is returned Raised if Index != {1, 2, 3}.
Parameters:Index (Standard_Integer) –
Return type:float
  • For this vector returns its three coordinates Xv, Yv, and Zvinline
Parameters:
  • Xv (float) –
  • Yv (float) –
  • Zv (float) –
Return type:

None

Cross()
Parameters:Right (gp_Vec) –
Return type:None
CrossCross()
Parameters:
  • V1 (gp_Vec) –
  • V2 (gp_Vec) –
Return type:

None

CrossCrossed()
  • Computes the triple vector product. <self> ^ (V1 ^ V2)
Parameters:
  • V1 (gp_Vec) –
  • V2 (gp_Vec) –
Return type:

gp_Vec

CrossMagnitude()
  • Computes the magnitude of the cross product between <self> and Right. Returns || <self> ^ Right ||
Parameters:Right (gp_Vec) –
Return type:float
CrossSquareMagnitude()
  • Computes the square magnitude of the cross product between <self> and Right. Returns || <self> ^ Right ||**2 Computes the triple vector product. <self> ^ (V1 ^ V2)
Parameters:Right (gp_Vec) –
Return type:float
Crossed()
  • computes the cross product between two vectors
Parameters:Right (gp_Vec) –
Return type:gp_Vec
Divide()
Parameters:Scalar (float) –
Return type:None
Divided()
  • Divides a vector by a scalar computes the cross product between two vectors
Parameters:Scalar (float) –
Return type:gp_Vec
Dot()
  • computes the scalar product
Parameters:Other (gp_Vec) –
Return type:float
DotCross()
  • Computes the triple scalar product <self> * (V1 ^ V2). normalizes a vector Raises an exception if the magnitude of the vector is lower or equal to Resolution from gp.
Parameters:
  • V1 (gp_Vec) –
  • V2 (gp_Vec) –
Return type:

float

IsEqual()
  • Returns True if the two vectors have the same magnitude value and the same direction. The precision values are LinearTolerance for the magnitude and AngularTolerance for the direction.
Parameters:
  • Other (gp_Vec) –
  • LinearTolerance (float) –
  • AngularTolerance (float) –
Return type:

bool

IsNormal()
  • Returns True if abs(<self>.Angle(Other) - PI/2.) <= AngularTolerance Raises VectorWithNullMagnitude if <self>.Magnitude() <= Resolution or Other.Magnitude() <= Resolution from gp
Parameters:
  • Other (gp_Vec) –
  • AngularTolerance (float) –
Return type:

bool

IsOpposite()
  • Returns True if PI - <self>.Angle(Other) <= AngularTolerance Raises VectorWithNullMagnitude if <self>.Magnitude() <= Resolution or Other.Magnitude() <= Resolution from gp
Parameters:
  • Other (gp_Vec) –
  • AngularTolerance (float) –
Return type:

bool

IsParallel()
  • Returns True if Angle(<self>, Other) <= AngularTolerance or PI - Angle(<self>, Other) <= AngularTolerance This definition means that two parallel vectors cannot define a plane but two vectors with opposite directions are considered as parallel. Raises VectorWithNullMagnitude if <self>.Magnitude() <= Resolution or Other.Magnitude() <= Resolution from gp
Parameters:
  • Other (gp_Vec) –
  • AngularTolerance (float) –
Return type:

bool

Magnitude()
  • Computes the magnitude of this vector.
Return type:float
Mirror()
Parameters:
  • V (gp_Vec) –
  • A1 (gp_Ax1) –
  • A2 (gp_Ax2) –
Return type:

None

Return type:

None

Return type:

None

Mirrored()
  • Performs the symmetrical transformation of a vector with respect to the vector V which is the center of the symmetry.
Parameters:V (gp_Vec) –
Return type:gp_Vec
  • Performs the symmetrical transformation of a vector with respect to an axis placement which is the axis of the symmetry.
Parameters:A1 (gp_Ax1) –
Return type:gp_Vec
  • Performs the symmetrical transformation of a vector with respect to a plane. The axis placement A2 locates the plane of the symmetry : (Location, XDirection, YDirection).
Parameters:A2 (gp_Ax2) –
Return type:gp_Vec
Multiplied()
  • Multiplies a vector by a scalar Divides a vector by a scalar
Parameters:Scalar (float) –
Return type:gp_Vec
Multiply()
Parameters:Scalar (float) –
Return type:None
Normalize()
Return type:None
Normalized()
  • normalizes a vector Raises an exception if the magnitude of the vector is lower or equal to Resolution from gp. Reverses the direction of a vector
Return type:gp_Vec
Reverse()
Return type:None
Reversed()
  • Reverses the direction of a vector
Return type:gp_Vec
Rotate()
Parameters:
  • A1 (gp_Ax1) –
  • Ang (float) –
Return type:

None

Rotated()
  • Rotates a vector. A1 is the axis of the rotation. Ang is the angular value of the rotation in radians.
Parameters:
  • A1 (gp_Ax1) –
  • Ang (float) –
Return type:

gp_Vec

Scale()
Parameters:S (float) –
Return type:None
Scaled()
  • Scales a vector. S is the scaling value. Transforms a vector with the transformation T.
Parameters:S (float) –
Return type:gp_Vec
SetCoord()
  • Changes the coordinate of range Index Index = 1 => X is modified Index = 2 => Y is modified Index = 3 => Z is modified Raised if Index != {1, 2, 3}.
Parameters:
  • Index (Standard_Integer) –
  • Xi (float) –
Return type:

None

  • For this vector, assigns - the values Xv, Yv and Zv to its three coordinates.
Parameters:
  • Xv (float) –
  • Yv (float) –
  • Zv (float) –
Return type:

None

SetLinearForm()
  • <self> is setted to the following linear form : A1 * V1 + A2 * V2 + A3 * V3 + V4
Parameters:
  • A1 (float) –
  • V1 (gp_Vec) –
  • A2 (float) –
  • V2 (gp_Vec) –
  • A3 (float) –
  • V3 (gp_Vec) –
  • V4 (gp_Vec) –
Return type:

None

  • <self> is setted to the following linear form : A1 * V1 + A2 * V2 + A3 * V3
Parameters:
  • A1 (float) –
  • V1 (gp_Vec) –
  • A2 (float) –
  • V2 (gp_Vec) –
  • A3 (float) –
  • V3 (gp_Vec) –
Return type:

None

  • <self> is setted to the following linear form : A1 * V1 + A2 * V2 + V3
Parameters:
  • A1 (float) –
  • V1 (gp_Vec) –
  • A2 (float) –
  • V2 (gp_Vec) –
  • V3 (gp_Vec) –
Return type:

None

  • <self> is setted to the following linear form : A1 * V1 + A2 * V2
Parameters:
  • A1 (float) –
  • V1 (gp_Vec) –
  • A2 (float) –
  • V2 (gp_Vec) –
Return type:

None

  • <self> is setted to the following linear form : A1 * V1 + V2
Parameters:
  • A1 (float) –
  • V1 (gp_Vec) –
  • V2 (gp_Vec) –
Return type:

None

  • <self> is setted to the following linear form : V1 + V2
Parameters:
  • V1 (gp_Vec) –
  • V2 (gp_Vec) –
Return type:

None

SetX()
  • Assigns the given value to the X coordinate of this vector.
Parameters:X (float) –
Return type:None
SetXYZ()
  • Assigns the three coordinates of Coord to this vector.
Parameters:Coord (gp_XYZ) –
Return type:None
SetY()
  • Assigns the given value to the X coordinate of this vector.
Parameters:Y (float) –
Return type:None
SetZ()
  • Assigns the given value to the X coordinate of this vector.
Parameters:Z (float) –
Return type:None
SquareMagnitude()
  • Computes the square magnitude of this vector. Adds two vectors
Return type:float
Subtract()
Parameters:Right (gp_Vec) –
Return type:None
Subtracted()
  • Subtracts two vectors Multiplies a vector by a scalar
Parameters:Right (gp_Vec) –
Return type:gp_Vec
Transform()
Parameters:T (gp_Trsf) –
Return type:None
Transformed()
  • Transforms a vector with the transformation T.
Parameters:T (gp_Trsf) –
Return type:gp_Vec
X()
  • For this vector, returns its X coordinate.
Return type:float
XYZ()
  • For this vector, returns - its three coordinates as a number triple
Return type:gp_XYZ
Y()
  • For this vector, returns its Y coordinate.
Return type:float
Z()
  • For this vector, returns its Z coordinate.
Return type:float
thisown

The membership flag

class OCC.gp.gp_Vec2d(*args)

Bases: object

Add()
Parameters:Other (gp_Vec2d) –
Return type:None
Added()
  • Adds two vectors
Parameters:Other (gp_Vec2d) –
Return type:gp_Vec2d
Angle()
  • Computes the angular value between <self> and <Other> returns the angle value between -PI and PI in radian. The orientation is from <self> to Other. The positive sense is the trigonometric sense. Raises VectorWithNullMagnitude if <self>.Magnitude() <= Resolution from gp or Other.Magnitude() <= Resolution because the angular value is indefinite if one of the vectors has a null magnitude.
Parameters:Other (gp_Vec2d) –
Return type:float
Coord()
  • Returns the coordinate of range Index : Index = 1 => X is returned Index = 2 => Y is returned Raised if Index != {1, 2}.
Parameters:Index (Standard_Integer) –
Return type:float
  • For this vector, returns its two coordinates Xv and Yv
Parameters:
  • Xv (float) –
  • Yv (float) –
Return type:

None

CrossMagnitude()
  • Computes the magnitude of the cross product between <self> and Right. Returns || <self> ^ Right ||
Parameters:Right (gp_Vec2d) –
Return type:float
CrossSquareMagnitude()
  • Computes the square magnitude of the cross product between <self> and Right. Returns || <self> ^ Right ||**2
Parameters:Right (gp_Vec2d) –
Return type:float
Crossed()
  • Computes the crossing product between two vectors
Parameters:Right (gp_Vec2d) –
Return type:float
Divide()
Parameters:Scalar (float) –
Return type:None
Divided()
  • divides a vector by a scalar
Parameters:Scalar (float) –
Return type:gp_Vec2d
Dot()
  • Computes the scalar product
Parameters:Other (gp_Vec2d) –
Return type:float
GetNormal()
Return type:gp_Vec2d
IsEqual()
  • Returns True if the two vectors have the same magnitude value and the same direction. The precision values are LinearTolerance for the magnitude and AngularTolerance for the direction.
Parameters:
  • Other (gp_Vec2d) –
  • LinearTolerance (float) –
  • AngularTolerance (float) –
Return type:

bool

IsNormal()
  • Returns True if abs(Abs(<self>.Angle(Other)) - PI/2.) <= AngularTolerance Raises VectorWithNullMagnitude if <self>.Magnitude() <= Resolution or Other.Magnitude() <= Resolution from gp.
Parameters:
  • Other (gp_Vec2d) –
  • AngularTolerance (float) –
Return type:

bool

IsOpposite()
  • Returns True if PI - Abs(<self>.Angle(Other)) <= AngularTolerance Raises VectorWithNullMagnitude if <self>.Magnitude() <= Resolution or Other.Magnitude() <= Resolution from gp.
Parameters:
  • Other (gp_Vec2d) –
  • AngularTolerance (float) –
Return type:

bool

IsParallel()
  • Returns true if Abs(Angle(<self>, Other)) <= AngularTolerance or PI - Abs(Angle(<self>, Other)) <= AngularTolerance Two vectors with opposite directions are considered as parallel. Raises VectorWithNullMagnitude if <self>.Magnitude() <= Resolution or Other.Magnitude() <= Resolution from gp
Parameters:
  • Other (gp_Vec2d) –
  • AngularTolerance (float) –
Return type:

bool

Magnitude()
  • Computes the magnitude of this vector.
Return type:float
Mirror()
Parameters:
  • V (gp_Vec2d) –
  • A1 (gp_Ax2d) –
Return type:

None

Return type:

None

Mirrored()
  • Performs the symmetrical transformation of a vector with respect to the vector V which is the center of the symmetry. Performs the symmetrical transformation of a vector with respect to an axis placement which is the axis of the symmetry.
Parameters:V (gp_Vec2d) –
Return type:gp_Vec2d
  • Performs the symmetrical transformation of a vector with respect to an axis placement which is the axis of the symmetry.
Parameters:A1 (gp_Ax2d) –
Return type:gp_Vec2d
Multiplied()
  • Normalizes a vector Raises an exception if the magnitude of the vector is lower or equal to Resolution from package gp.
Parameters:Scalar (float) –
Return type:gp_Vec2d
Multiply()
Parameters:Scalar (float) –
Return type:None
Normalize()
Return type:None
Normalized()
  • Normalizes a vector Raises an exception if the magnitude of the vector is lower or equal to Resolution from package gp. Reverses the direction of a vector
Return type:gp_Vec2d
Reverse()
Return type:None
Reversed()
  • Reverses the direction of a vector Subtracts two vectors
Return type:gp_Vec2d
Rotate()
Parameters:Ang (float) –
Return type:None
Rotated()
  • Rotates a vector. Ang is the angular value of the rotation in radians.
Parameters:Ang (float) –
Return type:gp_Vec2d
Scale()
Parameters:S (float) –
Return type:None
Scaled()
  • Scales a vector. S is the scaling value.
Parameters:S (float) –
Return type:gp_Vec2d
SetCoord()
  • Changes the coordinate of range Index Index = 1 => X is modified Index = 2 => Y is modified Raises OutOfRange if Index != {1, 2}.
Parameters:
  • Index (Standard_Integer) –
  • Xi (float) –
Return type:

None

  • For this vector, assigns the values Xv and Yv to its two coordinates
Parameters:
  • Xv (float) –
  • Yv (float) –
Return type:

None

SetLinearForm()
  • <self> is setted to the following linear form : A1 * V1 + A2 * V2 + V3
Parameters:
  • A1 (float) –
  • V1 (gp_Vec2d) –
  • A2 (float) –
  • V2 (gp_Vec2d) –
  • V3 (gp_Vec2d) –
Return type:

None

  • <self> is setted to the following linear form : A1 * V1 + A2 * V2
Parameters:
  • A1 (float) –
  • V1 (gp_Vec2d) –
  • A2 (float) –
  • V2 (gp_Vec2d) –
Return type:

None

  • <self> is setted to the following linear form : A1 * V1 + V2
Parameters:
  • A1 (float) –
  • V1 (gp_Vec2d) –
  • V2 (gp_Vec2d) –
Return type:

None

  • <self> is setted to the following linear form : Left + Right Performs the symmetrical transformation of a vector with respect to the vector V which is the center of the symmetry.
Parameters:
  • Left (gp_Vec2d) –
  • Right (gp_Vec2d) –
Return type:

None

SetX()
  • Assigns the given value to the X coordinate of this vector.
Parameters:X (float) –
Return type:None
SetXY()
  • Assigns the two coordinates of Coord to this vector.
Parameters:Coord (gp_XY) –
Return type:None
SetY()
  • Assigns the given value to the Y coordinate of this vector.
Parameters:Y (float) –
Return type:None
SquareMagnitude()
  • Computes the square magnitude of this vector.
Return type:float
Subtract()
Parameters:Right (gp_Vec2d) –
Return type:None
Subtracted()
  • Subtracts two vectors
Parameters:Right (gp_Vec2d) –
Return type:gp_Vec2d
Transform()
Parameters:T (gp_Trsf2d) –
Return type:None
Transformed()
  • Transforms a vector with a Trsf from gp.
Parameters:T (gp_Trsf2d) –
Return type:gp_Vec2d
X()
  • For this vector, returns its X coordinate.
Return type:float
XY()
  • For this vector, returns its two coordinates as a number pair
Return type:gp_XY
Y()
  • For this vector, returns its Y coordinate.
Return type:float
thisown

The membership flag

OCC.gp.gp_XOY()
  • //!Identifies a coordinate system where its origin is Origin, and its ‘main Direction’ and ‘X Direction’ coordinates Z = 1.0, X = Y =0.0 and X direction coordinates X = 1.0, Y = Z = 0.0
Return type:gp_Ax2
class OCC.gp.gp_XY(*args)

Bases: object

Add()
  • Computes the sum of this number pair and number pair Other <self>.X() = <self>.X() + Other.X() <self>.Y() = <self>.Y() + Other.Y()
Parameters:Other (gp_XY) –
Return type:None
Added()
  • Computes the sum of this number pair and number pair Other new.X() = <self>.X() + Other.X() new.Y() = <self>.Y() + Other.Y()
Parameters:Other (gp_XY) –
Return type:gp_XY
Coord()
  • returns the coordinate of range Index : Index = 1 => X is returned Index = 2 => Y is returned Raises OutOfRange if Index != {1, 2}.
Parameters:Index (Standard_Integer) –
Return type:float
  • For this number pair, returns its coordinates X and Y.
Parameters:
  • X (float) –
  • Y (float) –
Return type:

None

CrossMagnitude()
  • computes the magnitude of the cross product between <self> and Right. Returns || <self> ^ Right ||
Parameters:Right (gp_XY) –
Return type:float
CrossSquareMagnitude()
  • computes the square magnitude of the cross product between <self> and Right. Returns || <self> ^ Right ||**2
Parameters:Right (gp_XY) –
Return type:float
Crossed()
  • Real D = <self>.X() * Other.Y() - <self>.Y() * Other.X()
Parameters:Right (gp_XY) –
Return type:float
Divide()
  • divides <self> by a real.
Parameters:Scalar (float) –
Return type:None
Divided()
  • Divides <self> by a real.
Parameters:Scalar (float) –
Return type:gp_XY
Dot()
  • Computes the scalar product between <self> and Other
Parameters:Other (gp_XY) –
Return type:float
IsEqual()
  • Returns true if the coordinates of this number pair are equal to the respective coordinates of the number pair Other, within the specified tolerance Tolerance. I.e.: abs(<self>.X() - Other.X()) <= Tolerance and abs(<self>.Y() - Other.Y()) <= Tolerance and computations
Parameters:
  • Other (gp_XY) –
  • Tolerance (float) –
Return type:

bool

Modulus()
  • Computes Sqrt (X*X + Y*Y) where X and Y are the two coordinates of this number pair.
Return type:float
Multiplied()
  • New.X() = <self>.X() * Scalar; New.Y() = <self>.Y() * Scalar;
Parameters:Scalar (float) –
Return type:gp_XY
  • new.X() = <self>.X() * Other.X(); new.Y() = <self>.Y() * Other.Y();
Parameters:Other (gp_XY) –
Return type:gp_XY
  • New = Matrix * <self>
Parameters:Matrix (gp_Mat2d) –
Return type:gp_XY
Multiply()
  • <self>.X() = <self>.X() * Scalar; <self>.Y() = <self>.Y() * Scalar;
Parameters:Scalar (float) –
Return type:None
  • <self>.X() = <self>.X() * Other.X(); <self>.Y() = <self>.Y() * Other.Y();
Parameters:Other (gp_XY) –
Return type:None
  • <self> = Matrix * <self>
Parameters:Matrix (gp_Mat2d) –
Return type:None
Normalize()
  • <self>.X() = <self>.X()/ <self>.Modulus() <self>.Y() = <self>.Y()/ <self>.Modulus() Raises ConstructionError if <self>.Modulus() <= Resolution from gp
Return type:None
Normalized()
  • New.X() = <self>.X()/ <self>.Modulus() New.Y() = <self>.Y()/ <self>.Modulus() Raises ConstructionError if <self>.Modulus() <= Resolution from gp
Return type:gp_XY
Reverse()
  • <self>.X() = -<self>.X() <self>.Y() = -<self>.Y()
Return type:None
Reversed()
  • New.X() = -<self>.X() New.Y() = -<self>.Y()
Return type:gp_XY
SetCoord()
  • modifies the coordinate of range Index Index = 1 => X is modified Index = 2 => Y is modified Raises OutOfRange if Index != {1, 2}.
Parameters:
  • Index (Standard_Integer) –
  • Xi (float) –
Return type:

None

  • For this number pair, assigns the values X and Y to its coordinates
Parameters:
  • X (float) –
  • Y (float) –
Return type:

None

SetLinearForm()
  • Computes the following linear combination and assigns the result to this number pair: A1 * XY1 + A2 * XY2
Parameters:
  • A1 (float) –
  • XY1 (gp_XY) –
  • A2 (float) –
  • XY2 (gp_XY) –
Return type:

None

  • – Computes the following linear combination and assigns the result to this number pair: A1 * XY1 + A2 * XY2 + XY3
Parameters:
  • A1 (float) –
  • XY1 (gp_XY) –
  • A2 (float) –
  • XY2 (gp_XY) –
  • XY3 (gp_XY) –
Return type:

None

  • Computes the following linear combination and assigns the result to this number pair: A1 * XY1 + XY2
Parameters:
  • A1 (float) –
  • XY1 (gp_XY) –
  • XY2 (gp_XY) –
Return type:

None

  • Computes the following linear combination and assigns the result to this number pair: XY1 + XY2
Parameters:
  • XY1 (gp_XY) –
  • XY2 (gp_XY) –
Return type:

None

SetX()
  • Assigns the given value to the X coordinate of this number pair.
Parameters:X (float) –
Return type:None
SetY()
  • Assigns the given value to the Y coordinate of this number pair.
Parameters:Y (float) –
Return type:None
SquareModulus()
  • Computes X*X + Y*Y where X and Y are the two coordinates of this number pair.
Return type:float
Subtract()
  • <self>.X() = <self>.X() - Other.X() <self>.Y() = <self>.Y() - Other.Y()
Parameters:Right (gp_XY) –
Return type:None
Subtracted()
  • new.X() = <self>.X() - Other.X() new.Y() = <self>.Y() - Other.Y()
Parameters:Right (gp_XY) –
Return type:gp_XY
X()
  • Returns the X coordinate of this number pair.
Return type:float
Y()
  • Returns the Y coordinate of this number pair.
Return type:float
thisown

The membership flag

class OCC.gp.gp_XYZ(*args)

Bases: object

Add()
  • <self>.X() = <self>.X() + Other.X() <self>.Y() = <self>.Y() + Other.Y() <self>.Z() = <self>.Z() + Other.Z()
Parameters:Other (gp_XYZ) –
Return type:None
Added()
  • new.X() = <self>.X() + Other.X() new.Y() = <self>.Y() + Other.Y() new.Z() = <self>.Z() + Other.Z()
Parameters:Other (gp_XYZ) –
Return type:gp_XYZ
Coord()
  • returns the coordinate of range Index : Index = 1 => X is returned Index = 2 => Y is returned Index = 3 => Z is returned Raises OutOfRange if Index != {1, 2, 3}.
Parameters:
  • Index (Standard_Integer) –
  • X (float) –
  • Y (float) –
  • Z (float) –
Return type:

float

Return type:

None

Cross()
  • <self>.X() = <self>.Y() * Other.Z() - <self>.Z() * Other.Y() <self>.Y() = <self>.Z() * Other.X() - <self>.X() * Other.Z() <self>.Z() = <self>.X() * Other.Y() - <self>.Y() * Other.X()
Parameters:Right (gp_XYZ) –
Return type:None
CrossCross()
  • Triple vector product Computes <self> = <self>.Cross(Coord1.Cross(Coord2))
Parameters:
  • Coord1 (gp_XYZ) –
  • Coord2 (gp_XYZ) –
Return type:

None

CrossCrossed()
  • Triple vector product computes New = <self>.Cross(Coord1.Cross(Coord2))
Parameters:
  • Coord1 (gp_XYZ) –
  • Coord2 (gp_XYZ) –
Return type:

gp_XYZ

CrossMagnitude()
  • Computes the magnitude of the cross product between <self> and Right. Returns || <self> ^ Right ||
Parameters:Right (gp_XYZ) –
Return type:float
CrossSquareMagnitude()
  • Computes the square magnitude of the cross product between <self> and Right. Returns || <self> ^ Right ||**2
Parameters:Right (gp_XYZ) –
Return type:float
Crossed()
  • new.X() = <self>.Y() * Other.Z() - <self>.Z() * Other.Y() new.Y() = <self>.Z() * Other.X() - <self>.X() * Other.Z() new.Z() = <self>.X() * Other.Y() - <self>.Y() * Other.X()
Parameters:Right (gp_XYZ) –
Return type:gp_XYZ
Divide()
  • divides <self> by a real.
Parameters:Scalar (float) –
Return type:None
Divided()
  • divides <self> by a real.
Parameters:Scalar (float) –
Return type:gp_XYZ
Dot()
  • computes the scalar product between <self> and Other
Parameters:Other (gp_XYZ) –
Return type:float
DotCross()
  • computes the triple scalar product
Parameters:
  • Coord1 (gp_XYZ) –
  • Coord2 (gp_XYZ) –
Return type:

float

IsEqual()
  • Returns True if he coordinates of this XYZ object are equal to the respective coordinates Other, within the specified tolerance Tolerance. I.e.: abs(<self>.X() - Other.X()) <= Tolerance and abs(<self>.Y() - Other.Y()) <= Tolerance and abs(<self>.Z() - Other.Z()) <= Tolerance.
Parameters:
  • Other (gp_XYZ) –
  • Tolerance (float) –
Return type:

bool

Modulus()
  • computes Sqrt (X*X + Y*Y + Z*Z) where X, Y and Z are the three coordinates of this XYZ object.
Return type:float
Multiplied()
  • New.X() = <self>.X() * Scalar; New.Y() = <self>.Y() * Scalar; New.Z() = <self>.Z() * Scalar;
Parameters:Scalar (float) –
Return type:gp_XYZ
  • new.X() = <self>.X() * Other.X(); new.Y() = <self>.Y() * Other.Y(); new.Z() = <self>.Z() * Other.Z();
Parameters:Other (gp_XYZ) –
Return type:gp_XYZ
  • New = Matrix * <self>
Parameters:Matrix (gp_Mat) –
Return type:gp_XYZ
Multiply()
  • <self>.X() = <self>.X() * Scalar; <self>.Y() = <self>.Y() * Scalar; <self>.Z() = <self>.Z() * Scalar;
Parameters:Scalar (float) –
Return type:None
  • <self>.X() = <self>.X() * Other.X(); <self>.Y() = <self>.Y() * Other.Y(); <self>.Z() = <self>.Z() * Other.Z();
Parameters:Other (gp_XYZ) –
Return type:None
  • <self> = Matrix * <self>
Parameters:Matrix (gp_Mat) –
Return type:None
Normalize()
  • <self>.X() = <self>.X()/ <self>.Modulus() <self>.Y() = <self>.Y()/ <self>.Modulus() <self>.Z() = <self>.Z()/ <self>.Modulus() Raised if <self>.Modulus() <= Resolution from gp
Return type:None
Normalized()
  • New.X() = <self>.X()/ <self>.Modulus() New.Y() = <self>.Y()/ <self>.Modulus() New.Z() = <self>.Z()/ <self>.Modulus() Raised if <self>.Modulus() <= Resolution from gp
Return type:gp_XYZ
Reverse()
  • <self>.X() = -<self>.X() <self>.Y() = -<self>.Y() <self>.Z() = -<self>.Z()
Return type:None
Reversed()
  • New.X() = -<self>.X() New.Y() = -<self>.Y() New.Z() = -<self>.Z()
Return type:gp_XYZ
SetCoord()
  • For this XYZ object, assigns the values X, Y and Z to its three coordinates
Parameters:
  • X (float) –
  • Y (float) –
  • Z (float) –
Return type:

None

  • modifies the coordinate of range Index Index = 1 => X is modified Index = 2 => Y is modified Index = 3 => Z is modified Raises OutOfRange if Index != {1, 2, 3}.
Parameters:
  • Index (Standard_Integer) –
  • Xi (float) –
Return type:

None

SetLinearForm()
  • <self> is set to the following linear form : A1 * XYZ1 + A2 * XYZ2 + A3 * XYZ3 + XYZ4
Parameters:
  • A1 (float) –
  • XYZ1 (gp_XYZ) –
  • A2 (float) –
  • XYZ2 (gp_XYZ) –
  • A3 (float) –
  • XYZ3 (gp_XYZ) –
  • XYZ4 (gp_XYZ) –
Return type:

None

  • <self> is set to the following linear form : A1 * XYZ1 + A2 * XYZ2 + A3 * XYZ3
Parameters:
  • A1 (float) –
  • XYZ1 (gp_XYZ) –
  • A2 (float) –
  • XYZ2 (gp_XYZ) –
  • A3 (float) –
  • XYZ3 (gp_XYZ) –
Return type:

None

  • <self> is set to the following linear form : A1 * XYZ1 + A2 * XYZ2 + XYZ3
Parameters:
  • A1 (float) –
  • XYZ1 (gp_XYZ) –
  • A2 (float) –
  • XYZ2 (gp_XYZ) –
  • XYZ3 (gp_XYZ) –
Return type:

None

  • <self> is set to the following linear form : A1 * XYZ1 + A2 * XYZ2
Parameters:
  • A1 (float) –
  • XYZ1 (gp_XYZ) –
  • A2 (float) –
  • XYZ2 (gp_XYZ) –
Return type:

None

  • <self> is set to the following linear form : A1 * XYZ1 + XYZ2
Parameters:
  • A1 (float) –
  • XYZ1 (gp_XYZ) –
  • XYZ2 (gp_XYZ) –
Return type:

None

  • <self> is set to the following linear form : XYZ1 + XYZ2
Parameters:
  • XYZ1 (gp_XYZ) –
  • XYZ2 (gp_XYZ) –
Return type:

None

SetX()
  • Assigns the given value to the X coordinate
Parameters:X (float) –
Return type:None
SetY()
  • Assigns the given value to the Y coordinate
Parameters:Y (float) –
Return type:None
SetZ()
  • Assigns the given value to the Z coordinate
Parameters:Z (float) –
Return type:None
SquareModulus()
  • Computes X*X + Y*Y + Z*Z where X, Y and Z are the three coordinates of this XYZ object.
Return type:float
Subtract()
  • <self>.X() = <self>.X() - Other.X() <self>.Y() = <self>.Y() - Other.Y() <self>.Z() = <self>.Z() - Other.Z()
Parameters:Right (gp_XYZ) –
Return type:None
Subtracted()
  • new.X() = <self>.X() - Other.X() new.Y() = <self>.Y() - Other.Y() new.Z() = <self>.Z() - Other.Z()
Parameters:Right (gp_XYZ) –
Return type:gp_XYZ
X()
  • Returns the X coordinate
Return type:float
Y()
  • Returns the Y coordinate
Return type:float
Z()
  • Returns the Z coordinate
Return type:float
thisown

The membership flag

OCC.gp.gp_YOZ()
  • //!Identifies a coordinate system where its origin is Origin, and its ‘main Direction’ and ‘X Direction’ coordinates X = 1.0, Z = Y =0.0 and X direction coordinates Y = 1.0, X = Z = 0.0 In 2D space
Return type:gp_Ax2
OCC.gp.gp_ZOX()
  • //!Identifies a coordinate system where its origin is Origin, and its ‘main Direction’ and ‘X Direction’ coordinates Y = 1.0, X = Z =0.0 and X direction coordinates Z = 1.0, X = Y = 0.0
Return type:gp_Ax2