OCC.PLib module

class OCC.PLib.Handle_PLib_Base(*args)

Bases: OCC.MMgt.Handle_MMgt_TShared

static DownCast()
GetObject()
IsNull()
Nullify()
thisown

The membership flag

class OCC.PLib.Handle_PLib_JacobiPolynomial(*args)

Bases: OCC.PLib.Handle_PLib_Base

static DownCast()
GetObject()
IsNull()
Nullify()
thisown

The membership flag

class OCC.PLib.PLib_Base(*args, **kwargs)

Bases: OCC.MMgt.MMgt_TShared

D0()
  • Compute the values of the basis functions in u
Parameters:
  • U (float) –
  • BasisValue (TColStd_Array1OfReal &) –
Return type:

void

D1()
  • Compute the values and the derivatives values of the basis functions in u
Parameters:
  • U (float) –
  • BasisValue (TColStd_Array1OfReal &) –
  • BasisD1 (TColStd_Array1OfReal &) –
Return type:

void

D2()
  • Compute the values and the derivatives values of the basis functions in u
Parameters:
  • U (float) –
  • BasisValue (TColStd_Array1OfReal &) –
  • BasisD1 (TColStd_Array1OfReal &) –
  • BasisD2 (TColStd_Array1OfReal &) –
Return type:

void

D3()
  • Compute the values and the derivatives values of the basis functions in u
Parameters:
  • U (float) –
  • BasisValue (TColStd_Array1OfReal &) –
  • BasisD1 (TColStd_Array1OfReal &) –
  • BasisD2 (TColStd_Array1OfReal &) –
  • BasisD3 (TColStd_Array1OfReal &) –
Return type:

void

GetHandle()

PLib_Base_GetHandle(PLib_Base self) -> Handle_PLib_Base

ReduceDegree()
  • Compute NewDegree <= MaxDegree so that MaxError is lower than Tol. MaxError can be greater than Tol if it is not possible to find a NewDegree <= MaxDegree. In this case NewDegree = MaxDegree
Parameters:
  • Dimension (Standard_Integer) –
  • MaxDegree (Standard_Integer) –
  • Tol (float) –
  • BaseCoeff (float &) –
  • NewDegree (Standard_Integer &) –
  • MaxError (float &) –
Return type:

void

ToCoefficients()
  • Convert the polynomial P(t) in the canonical base.
Parameters:
  • Dimension (Standard_Integer) –
  • Degree (Standard_Integer) –
  • CoeffinBase (TColStd_Array1OfReal &) –
  • Coefficients (TColStd_Array1OfReal &) –
Return type:

void

WorkDegree()
  • returns WorkDegree
Return type:int
thisown

The membership flag

class OCC.PLib.PLib_DoubleJacobiPolynomial(*args)

Bases: object

AverageError()
Parameters:
  • Dimension (Standard_Integer) –
  • DegreeU (Standard_Integer) –
  • DegreeV (Standard_Integer) –
  • dJacCoeff (Standard_Integer) –
  • JacCoeff (TColStd_Array1OfReal &) –
Return type:

float

MaxError()
Parameters:
  • Dimension (Standard_Integer) –
  • MinDegreeU (Standard_Integer) –
  • MaxDegreeU (Standard_Integer) –
  • MinDegreeV (Standard_Integer) –
  • MaxDegreeV (Standard_Integer) –
  • dJacCoeff (Standard_Integer) –
  • JacCoeff (TColStd_Array1OfReal &) –
  • Error (float) –
Return type:

float

MaxErrorU()
Parameters:
  • Dimension (Standard_Integer) –
  • DegreeU (Standard_Integer) –
  • DegreeV (Standard_Integer) –
  • dJacCoeff (Standard_Integer) –
  • JacCoeff (TColStd_Array1OfReal &) –
Return type:

float

MaxErrorV()
Parameters:
  • Dimension (Standard_Integer) –
  • DegreeU (Standard_Integer) –
  • DegreeV (Standard_Integer) –
  • dJacCoeff (Standard_Integer) –
  • JacCoeff (TColStd_Array1OfReal &) –
Return type:

float

ReduceDegree()
Parameters:
  • Dimension (Standard_Integer) –
  • MinDegreeU (Standard_Integer) –
  • MaxDegreeU (Standard_Integer) –
  • MinDegreeV (Standard_Integer) –
  • MaxDegreeV (Standard_Integer) –
  • dJacCoeff (Standard_Integer) –
  • JacCoeff (TColStd_Array1OfReal &) –
  • EpmsCut (float) –
  • MaxError (float &) –
  • NewDegreeU (Standard_Integer &) –
  • NewDegreeV (Standard_Integer &) –
Return type:

None

TabMaxU()
  • returns myTabMaxU;
Return type:Handle_TColStd_HArray1OfReal
TabMaxV()
  • returns myTabMaxV;
Return type:Handle_TColStd_HArray1OfReal
U()
  • returns myJacPolU;
Return type:Handle_PLib_JacobiPolynomial
V()
  • returns myJacPolV;
Return type:Handle_PLib_JacobiPolynomial
WDoubleJacobiToCoefficients()
Parameters:
  • Dimension (Standard_Integer) –
  • DegreeU (Standard_Integer) –
  • DegreeV (Standard_Integer) –
  • JacCoeff (TColStd_Array1OfReal &) –
  • Coefficients (TColStd_Array1OfReal &) –
Return type:

None

thisown

The membership flag

class OCC.PLib.PLib_JacobiPolynomial(*args)

Bases: OCC.PLib.PLib_Base

AverageError()
Parameters:
  • Dimension (Standard_Integer) –
  • JacCoeff (float &) –
  • NewDegree (Standard_Integer) –
Return type:

float

GetHandle()

PLib_JacobiPolynomial_GetHandle(PLib_JacobiPolynomial self) -> Handle_PLib_JacobiPolynomial

MaxError()
  • This method computes the maximum error on the polynomial W(t) Q(t) obtained by missing the coefficients of JacCoeff from NewDegree +1 to Degree
Parameters:
  • Dimension (Standard_Integer) –
  • JacCoeff (float &) –
  • NewDegree (Standard_Integer) –
Return type:

float

MaxValue()
  • this method loads for k=0,q the maximum value of abs ( W(t)*Jk(t) )for t bellonging to [-1,1] This values are loaded is the array TabMax(0,myWorkDegree-2*(myNivConst+1)) MaxValue ( me ; TabMaxPointer : in out Real );
Parameters:TabMax (TColStd_Array1OfReal &) –
Return type:None
NivConstr()
  • returns NivConstr
Return type:int
Points()
  • returns the Jacobi Points for Gauss integration ie the positive values of the Legendre roots by increasing values NbGaussPoints is the number of points choosen for the integral computation. TabPoints (0,NbGaussPoints/2) TabPoints (0) is loaded only for the odd values of NbGaussPoints The possible values for NbGaussPoints are : 8, 10, 15, 20, 25, 30, 35, 40, 50, 61 NbGaussPoints must be greater than Degree
Parameters:
  • NbGaussPoints (Standard_Integer) –
  • TabPoints (TColStd_Array1OfReal &) –
Return type:

None

Weights()
  • returns the Jacobi weigths for Gauss integration only for the positive values of the Legendre roots in the order they are given by the method Points NbGaussPoints is the number of points choosen for the integral computation. TabWeights (0,NbGaussPoints/2,0,Degree) TabWeights (0,.) are only loaded for the odd values of NbGaussPoints The possible values for NbGaussPoints are : 8 , 10 , 15 ,20 ,25 , 30, 35 , 40 , 50 , 61 NbGaussPoints must be greater than Degree
Parameters:
  • NbGaussPoints (Standard_Integer) –
  • TabWeights (TColStd_Array2OfReal &) –
Return type:

None

thisown

The membership flag

class OCC.PLib.SwigPyIterator(*args, **kwargs)

Bases: object

advance()
copy()
decr()
distance()
equal()
incr()
next()
previous()
thisown

The membership flag

value()
class OCC.PLib.plib(*args, **kwargs)

Bases: object

static Bin(*args)
  • Returns the Binomial Cnp. N should be <= BSplCLib::MaxDegree().
Parameters:
  • N (Standard_Integer) –
  • P (Standard_Integer) –
Return type:

float

static CoefficientsPoles(*args)
Parameters:
  • Coefs (TColgp_Array2OfPnt) –
  • WCoefs (TColStd_Array2OfReal &) –
  • Poles (TColgp_Array2OfPnt) –
  • WPoles (TColStd_Array2OfReal &) –
  • Coefs
  • WCoefs
  • Poles
  • WPoles
  • Coefs
  • WCoefs
  • Poles
  • WPoles
  • dim (Standard_Integer) –
  • Coefs
  • WCoefs
  • Poles
  • WPoles
  • Coefs
  • WCoefs
  • Poles
  • WPoles
Return type:

void

Return type:

void

Return type:

void

Return type:

void

Return type:

void

static ConstraintOrder(*args)
  • translates from Integer to GeomAbs_Shape
Parameters:NivConstr (Standard_Integer) –
Return type:GeomAbs_Shape
static EvalCubicHermite(*args)
  • Performs the Cubic Hermite Interpolation of given series of points with given parameters with the requested derivative order. ValueArray stores the value at the first and last parameter. It has the following format : [0], [Dimension-1] : value at first param [Dimension], [Dimension + Dimension-1] : value at last param Derivative array stores the value of the derivatives at the first parameter and at the last parameter in the following format [0], [Dimension-1] : derivative at first param [Dimension], [Dimension + Dimension-1] : derivative at last param ParameterArray stores the first and last parameter in the following format : [0] : first parameter [1] : last parameter Results will store things in the following format with d = DerivativeOrder [0], [Dimension-1] : value [Dimension], [Dimension + Dimension-1] : first derivative [d *Dimension], [d*Dimension + Dimension-1]: dth derivative
Parameters:
  • U (float) –
  • DerivativeOrder (Standard_Integer) –
  • Dimension (Standard_Integer) –
  • ValueArray (float &) –
  • DerivativeArray (float &) –
  • ParameterArray (float &) –
  • Results (float &) –
Return type:

int

static EvalLagrange(*args)
  • Performs the Lagrange Interpolation of given series of points with given parameters with the requested derivative order Results will store things in the following format with d = DerivativeOrder [0], [Dimension-1] : value [Dimension], [Dimension + Dimension-1] : first derivative [d *Dimension], [d*Dimension + Dimension-1]: dth derivative
Parameters:
  • U (float) –
  • DerivativeOrder (Standard_Integer) –
  • Degree (Standard_Integer) –
  • Dimension (Standard_Integer) –
  • ValueArray (float &) –
  • ParameterArray (float &) –
  • Results (float &) –
Return type:

int

static EvalLength(*args)
Parameters:
  • Degree (Standard_Integer) –
  • Dimension (Standard_Integer) –
  • PolynomialCoeff (float &) –
  • U1 (float) –
  • U2 (float) –
  • Length (float &) –
  • Degree
  • Dimension
  • PolynomialCoeff
  • U1
  • U2
  • Tol (float) –
  • Length
  • Error (float &) –
Return type:

void

Return type:

void

static EvalPoly2Var(*args)
  • Applies EvalPolynomial twice to evaluate the derivative of orders UDerivativeOrder in U, VDerivativeOrder in V at parameters U,V PolynomialCoeff are stored in the following fashion c00(1) .... c00(Dimension) c10(1) .... c10(Dimension) .... cm0(1) .... cm0(Dimension) .... c01(1) .... c01(Dimension) c11(1) .... c11(Dimension) .... cm1(1) .... cm1(Dimension) .... c0n(1) .... c0n(Dimension) c1n(1) .... c1n(Dimension) .... cmn(1) .... cmn(Dimension) where the polynomial is defined as : 2 m c00 + c10 U + c20 U + .... + cm0 U 2 m + c01 V + c11 UV + c21 U V + .... + cm1 U V n m n + .... + c0n V + .... + cmn U V with m = UDegree and n = VDegree Results stores the result in the following format f(1) f(2) .... f(Dimension) Warning: <Results> and <PolynomialCoeff> must be dimensioned properly
Parameters:
  • U (float) –
  • V (float) –
  • UDerivativeOrder (Standard_Integer) –
  • VDerivativeOrder (Standard_Integer) –
  • UDegree (Standard_Integer) –
  • VDegree (Standard_Integer) –
  • Dimension (Standard_Integer) –
  • PolynomialCoeff (float &) –
  • Results (float &) –
Return type:

void

static EvalPolynomial(*args)
  • Performs Horner method with synthethic division for derivatives parameter <U>, with <Degree> and <Dimension>. PolynomialCoeff are stored in the following fashion c0(1) c0(2) .... c0(Dimension) c1(1) c1(2) .... c1(Dimension) cDegree(1) cDegree(2) .... cDegree(Dimension) where the polynomial is defined as : 2 Degree c0 + c1 X + c2 X + .... cDegree X Results stores the result in the following format f(1) f(2) .... f(Dimension) (1) (1) (1) f (1) f (2) .... f (Dimension) (DerivativeRequest) (DerivativeRequest) f (1) f (Dimension) this just evaluates the point at parameter U Warning: <Results> and <PolynomialCoeff> must be dimensioned properly
Parameters:
  • U (float) –
  • DerivativeOrder (Standard_Integer) –
  • Degree (Standard_Integer) –
  • Dimension (Standard_Integer) –
  • PolynomialCoeff (float &) –
  • Results (float &) –
Return type:

void

static GetPoles(*args)
  • Get from FP the coordinates of the poles.
Parameters:
  • FP (TColStd_Array1OfReal &) –
  • Poles (TColgp_Array1OfPnt) –
Return type:

void

  • Get from FP the coordinates of the poles.
Parameters:
  • FP (TColStd_Array1OfReal &) –
  • Poles (TColgp_Array1OfPnt) –
  • Weights (TColStd_Array1OfReal &) –
Return type:

void

  • Get from FP the coordinates of the poles.
Parameters:
  • FP (TColStd_Array1OfReal &) –
  • Poles (TColgp_Array1OfPnt2d) –
Return type:

void

  • Get from FP the coordinates of the poles.
Parameters:
  • FP (TColStd_Array1OfReal &) –
  • Poles (TColgp_Array1OfPnt2d) –
  • Weights (TColStd_Array1OfReal &) –
Return type:

void

static HermiteCoefficients(*args)
Parameters:
  • FirstParameter (float) –
  • LastParameter (float) –
  • FirstOrder (Standard_Integer) –
  • LastOrder (Standard_Integer) –
  • MatrixCoefs (math_Matrix &) –
Return type:

bool

static HermiteInterpolate(*args)
  • Compute the coefficients in the canonical base of the polynomial satisfying the given constraints at the given parameters The array FirstContr(i,j) i=1,Dimension j=0,FirstOrder contains the values of the constraint at parameter FirstParameter idem for LastConstr
Parameters:
  • Dimension (Standard_Integer) –
  • FirstParameter (float) –
  • LastParameter (float) –
  • FirstOrder (Standard_Integer) –
  • LastOrder (Standard_Integer) –
  • FirstConstr (TColStd_Array2OfReal &) –
  • LastConstr (TColStd_Array2OfReal &) –
  • Coefficients (TColStd_Array1OfReal &) –
Return type:

bool

static JacobiParameters(*args)
  • Compute the number of points used for integral computations (NbGaussPoints) and the degree of Jacobi Polynomial (WorkDegree). ConstraintOrder has to be GeomAbs_C0, GeomAbs_C1 or GeomAbs_C2 Code: Code d’ init. des parametres de discretisation. = -5 = -4 = -3 = -2 = -1 = 1 calcul rapide avec precision moyenne. = 2 calcul rapide avec meilleure precision. = 3 calcul un peu plus lent avec bonne precision. = 4 calcul lent avec la meilleure precision possible.
Parameters:
  • ConstraintOrder (GeomAbs_Shape) –
  • MaxDegree (Standard_Integer) –
  • Code (Standard_Integer) –
  • NbGaussPoints (Standard_Integer &) –
  • WorkDegree (Standard_Integer &) –
Return type:

void

static NivConstr(*args)
  • translates from GeomAbs_Shape to Integer
Parameters:ConstraintOrder (GeomAbs_Shape) –
Return type:int
static NoDerivativeEvalPolynomial(*args)
  • Same as above with DerivativeOrder = 0;
Parameters:
  • U (float) –
  • Degree (Standard_Integer) –
  • Dimension (Standard_Integer) –
  • DegreeDimension (Standard_Integer) –
  • PolynomialCoeff (float &) –
  • Results (float &) –
Return type:

void

static NoWeights()
  • Used as argument for a non rational functions
Return type:TColStd_Array1OfReal
static NoWeights2()
  • Used as argument for a non rational functions
Return type:TColStd_Array2OfReal
static RationalDerivative(*args)
  • Computes the derivatives of a ratio at order <N> in dimension <Dimension>. <Ders> is an array containing the values of the input derivatives from 0 to Min(<N>,<Degree>). For orders higher than <Degree> the inputcd /s2d1/BMDL/ derivatives are assumed to be 0. Content of <Ders> : x(1),x(2),...,x(Dimension),w x’(1),x’(2),...,x’(Dimension),w’ x’‘(1),x’‘(2),...,x’‘(Dimension),w’’ If <All> is false, only the derivative at order <N> is computed. <RDers> is an array of length Dimension which will contain the result : x(1)/w , x(2)/w , ... derivated <N> times If <All> is true all the derivatives up to order <N> are computed. <RDers> is an array of length Dimension * (N+1) which will contains : x(1)/w , x(2)/w , ... x(1)/w , x(2)/w , ... derivated <1> times x(1)/w , x(2)/w , ... derivated <2> times ... x(1)/w , x(2)/w , ... derivated <N> times Warning: <RDers> must be dimensionned properly.
Parameters:
  • Degree (Standard_Integer) –
  • N (Standard_Integer) –
  • Dimension (Standard_Integer) –
  • Ders (float &) –
  • RDers (float &) –
  • All (bool) – default value is Standard_True
Return type:

void

  • Computes the derivatives of a ratio at order <N> in dimension <Dimension>. <Ders> is an array containing the values of the input derivatives from 0 to Min(<N>,<Degree>). For orders higher than <Degree> the inputcd /s2d1/BMDL/ derivatives are assumed to be 0. Content of <Ders> : x(1),x(2),...,x(Dimension),w x’(1),x’(2),...,x’(Dimension),w’ x’‘(1),x’‘(2),...,x’‘(Dimension),w’’ If <All> is false, only the derivative at order <N> is computed. <RDers> is an array of length Dimension which will contain the result : x(1)/w , x(2)/w , ... derivated <N> times If <All> is true all the derivatives up to order <N> are computed. <RDers> is an array of length Dimension * (N+1) which will contains : x(1)/w , x(2)/w , ... x(1)/w , x(2)/w , ... derivated <1> times x(1)/w , x(2)/w , ... derivated <2> times ... x(1)/w , x(2)/w , ... derivated <N> times Warning: <RDers> must be dimensionned properly.
Parameters:
  • Degree (Standard_Integer) –
  • N (Standard_Integer) –
  • Dimension (Standard_Integer) –
  • Ders (float &) –
  • RDers (float &) –
  • All (bool) – default value is Standard_True
Return type:

void

static RationalDerivatives(*args)
  • Computes DerivativesRequest derivatives of a ratio at of a BSpline function of degree <Degree> dimension <Dimension>. <PolesDerivatives> is an array containing the values of the input derivatives from 0 to <DerivativeRequest> For orders higher than <Degree> the input derivatives are assumed to be 0. Content of <PoleasDerivatives> : x(1),x(2),...,x(Dimension) x’(1),x’(2),...,x’(Dimension) x’‘(1),x’‘(2),...,x’‘(Dimension) WeightsDerivatives is an array that contains derivatives from 0 to <DerivativeRequest> After returning from the routine the array RationalDerivatives contains the following x(1)/w , x(2)/w , ... x(1)/w , x(2)/w , ... derivated once x(1)/w , x(2)/w , ... twice x(1)/w , x(2)/w , ... derivated <DerivativeRequest> times The array RationalDerivatives and PolesDerivatives can be same since the overwrite is non destructive within the algorithm Warning: <RationalDerivates> must be dimensionned properly.
Parameters:
  • DerivativesRequest (Standard_Integer) –
  • Dimension (Standard_Integer) –
  • PolesDerivatives (float &) –
  • WeightsDerivatives (float &) –
  • RationalDerivates (float &) –
Return type:

void

static SetPoles(*args)
  • Copy in FP the coordinates of the poles.
Parameters:
  • Poles (TColgp_Array1OfPnt) –
  • FP (TColStd_Array1OfReal &) –
Return type:

void

  • Copy in FP the coordinates of the poles.
Parameters:
  • Poles (TColgp_Array1OfPnt) –
  • Weights (TColStd_Array1OfReal &) –
  • FP (TColStd_Array1OfReal &) –
Return type:

void

  • Copy in FP the coordinates of the poles.
Parameters:
  • Poles (TColgp_Array1OfPnt2d) –
  • FP (TColStd_Array1OfReal &) –
Return type:

void

  • Copy in FP the coordinates of the poles.
Parameters:
  • Poles (TColgp_Array1OfPnt2d) –
  • Weights (TColStd_Array1OfReal &) –
  • FP (TColStd_Array1OfReal &) –
Return type:

void

static Trimming(*args)
Parameters:
  • U1 (float) –
  • U2 (float) –
  • Coeffs (TColStd_Array1OfReal &) –
  • WCoeffs (TColStd_Array1OfReal &) –
  • U1
  • U2
  • Coeffs
  • WCoeffs
  • U1
  • U2
  • Coeffs
  • WCoeffs
  • U1
  • U2
  • dim (Standard_Integer) –
  • Coeffs
  • WCoeffs
Return type:

void

Return type:

void

Return type:

void

Return type:

void

static UTrimming(*args)
Parameters:
  • U1 (float) –
  • U2 (float) –
  • Coeffs (TColgp_Array2OfPnt) –
  • WCoeffs (TColStd_Array2OfReal &) –
Return type:

void

static VTrimming(*args)
Parameters:
  • V1 (float) –
  • V2 (float) –
  • Coeffs (TColgp_Array2OfPnt) –
  • WCoeffs (TColStd_Array2OfReal &) –
Return type:

void

thisown

The membership flag

OCC.PLib.plib_Bin(*args)
  • Returns the Binomial Cnp. N should be <= BSplCLib::MaxDegree().
Parameters:
  • N (Standard_Integer) –
  • P (Standard_Integer) –
Return type:

float

OCC.PLib.plib_CoefficientsPoles(*args)
Parameters:
  • Coefs (TColgp_Array2OfPnt) –
  • WCoefs (TColStd_Array2OfReal &) –
  • Poles (TColgp_Array2OfPnt) –
  • WPoles (TColStd_Array2OfReal &) –
  • Coefs
  • WCoefs
  • Poles
  • WPoles
  • Coefs
  • WCoefs
  • Poles
  • WPoles
  • dim (Standard_Integer) –
  • Coefs
  • WCoefs
  • Poles
  • WPoles
  • Coefs
  • WCoefs
  • Poles
  • WPoles
Return type:

void

Return type:

void

Return type:

void

Return type:

void

Return type:

void

OCC.PLib.plib_ConstraintOrder(*args)
  • translates from Integer to GeomAbs_Shape
Parameters:NivConstr (Standard_Integer) –
Return type:GeomAbs_Shape
OCC.PLib.plib_EvalCubicHermite(*args)
  • Performs the Cubic Hermite Interpolation of given series of points with given parameters with the requested derivative order. ValueArray stores the value at the first and last parameter. It has the following format : [0], [Dimension-1] : value at first param [Dimension], [Dimension + Dimension-1] : value at last param Derivative array stores the value of the derivatives at the first parameter and at the last parameter in the following format [0], [Dimension-1] : derivative at first param [Dimension], [Dimension + Dimension-1] : derivative at last param ParameterArray stores the first and last parameter in the following format : [0] : first parameter [1] : last parameter Results will store things in the following format with d = DerivativeOrder [0], [Dimension-1] : value [Dimension], [Dimension + Dimension-1] : first derivative [d *Dimension], [d*Dimension + Dimension-1]: dth derivative
Parameters:
  • U (float) –
  • DerivativeOrder (Standard_Integer) –
  • Dimension (Standard_Integer) –
  • ValueArray (float &) –
  • DerivativeArray (float &) –
  • ParameterArray (float &) –
  • Results (float &) –
Return type:

int

OCC.PLib.plib_EvalLagrange(*args)
  • Performs the Lagrange Interpolation of given series of points with given parameters with the requested derivative order Results will store things in the following format with d = DerivativeOrder [0], [Dimension-1] : value [Dimension], [Dimension + Dimension-1] : first derivative [d *Dimension], [d*Dimension + Dimension-1]: dth derivative
Parameters:
  • U (float) –
  • DerivativeOrder (Standard_Integer) –
  • Degree (Standard_Integer) –
  • Dimension (Standard_Integer) –
  • ValueArray (float &) –
  • ParameterArray (float &) –
  • Results (float &) –
Return type:

int

OCC.PLib.plib_EvalLength(*args)
Parameters:
  • Degree (Standard_Integer) –
  • Dimension (Standard_Integer) –
  • PolynomialCoeff (float &) –
  • U1 (float) –
  • U2 (float) –
  • Length (float &) –
  • Degree
  • Dimension
  • PolynomialCoeff
  • U1
  • U2
  • Tol (float) –
  • Length
  • Error (float &) –
Return type:

void

Return type:

void

OCC.PLib.plib_EvalPoly2Var(*args)
  • Applies EvalPolynomial twice to evaluate the derivative of orders UDerivativeOrder in U, VDerivativeOrder in V at parameters U,V PolynomialCoeff are stored in the following fashion c00(1) .... c00(Dimension) c10(1) .... c10(Dimension) .... cm0(1) .... cm0(Dimension) .... c01(1) .... c01(Dimension) c11(1) .... c11(Dimension) .... cm1(1) .... cm1(Dimension) .... c0n(1) .... c0n(Dimension) c1n(1) .... c1n(Dimension) .... cmn(1) .... cmn(Dimension) where the polynomial is defined as : 2 m c00 + c10 U + c20 U + .... + cm0 U 2 m + c01 V + c11 UV + c21 U V + .... + cm1 U V n m n + .... + c0n V + .... + cmn U V with m = UDegree and n = VDegree Results stores the result in the following format f(1) f(2) .... f(Dimension) Warning: <Results> and <PolynomialCoeff> must be dimensioned properly
Parameters:
  • U (float) –
  • V (float) –
  • UDerivativeOrder (Standard_Integer) –
  • VDerivativeOrder (Standard_Integer) –
  • UDegree (Standard_Integer) –
  • VDegree (Standard_Integer) –
  • Dimension (Standard_Integer) –
  • PolynomialCoeff (float &) –
  • Results (float &) –
Return type:

void

OCC.PLib.plib_EvalPolynomial(*args)
  • Performs Horner method with synthethic division for derivatives parameter <U>, with <Degree> and <Dimension>. PolynomialCoeff are stored in the following fashion c0(1) c0(2) .... c0(Dimension) c1(1) c1(2) .... c1(Dimension) cDegree(1) cDegree(2) .... cDegree(Dimension) where the polynomial is defined as : 2 Degree c0 + c1 X + c2 X + .... cDegree X Results stores the result in the following format f(1) f(2) .... f(Dimension) (1) (1) (1) f (1) f (2) .... f (Dimension) (DerivativeRequest) (DerivativeRequest) f (1) f (Dimension) this just evaluates the point at parameter U Warning: <Results> and <PolynomialCoeff> must be dimensioned properly
Parameters:
  • U (float) –
  • DerivativeOrder (Standard_Integer) –
  • Degree (Standard_Integer) –
  • Dimension (Standard_Integer) –
  • PolynomialCoeff (float &) –
  • Results (float &) –
Return type:

void

OCC.PLib.plib_GetPoles(*args)
  • Get from FP the coordinates of the poles.
Parameters:
  • FP (TColStd_Array1OfReal &) –
  • Poles (TColgp_Array1OfPnt) –
Return type:

void

  • Get from FP the coordinates of the poles.
Parameters:
  • FP (TColStd_Array1OfReal &) –
  • Poles (TColgp_Array1OfPnt) –
  • Weights (TColStd_Array1OfReal &) –
Return type:

void

  • Get from FP the coordinates of the poles.
Parameters:
  • FP (TColStd_Array1OfReal &) –
  • Poles (TColgp_Array1OfPnt2d) –
Return type:

void

  • Get from FP the coordinates of the poles.
Parameters:
  • FP (TColStd_Array1OfReal &) –
  • Poles (TColgp_Array1OfPnt2d) –
  • Weights (TColStd_Array1OfReal &) –
Return type:

void

OCC.PLib.plib_HermiteCoefficients(*args)
Parameters:
  • FirstParameter (float) –
  • LastParameter (float) –
  • FirstOrder (Standard_Integer) –
  • LastOrder (Standard_Integer) –
  • MatrixCoefs (math_Matrix &) –
Return type:

bool

OCC.PLib.plib_HermiteInterpolate(*args)
  • Compute the coefficients in the canonical base of the polynomial satisfying the given constraints at the given parameters The array FirstContr(i,j) i=1,Dimension j=0,FirstOrder contains the values of the constraint at parameter FirstParameter idem for LastConstr
Parameters:
  • Dimension (Standard_Integer) –
  • FirstParameter (float) –
  • LastParameter (float) –
  • FirstOrder (Standard_Integer) –
  • LastOrder (Standard_Integer) –
  • FirstConstr (TColStd_Array2OfReal &) –
  • LastConstr (TColStd_Array2OfReal &) –
  • Coefficients (TColStd_Array1OfReal &) –
Return type:

bool

OCC.PLib.plib_JacobiParameters(*args)
  • Compute the number of points used for integral computations (NbGaussPoints) and the degree of Jacobi Polynomial (WorkDegree). ConstraintOrder has to be GeomAbs_C0, GeomAbs_C1 or GeomAbs_C2 Code: Code d’ init. des parametres de discretisation. = -5 = -4 = -3 = -2 = -1 = 1 calcul rapide avec precision moyenne. = 2 calcul rapide avec meilleure precision. = 3 calcul un peu plus lent avec bonne precision. = 4 calcul lent avec la meilleure precision possible.
Parameters:
  • ConstraintOrder (GeomAbs_Shape) –
  • MaxDegree (Standard_Integer) –
  • Code (Standard_Integer) –
  • NbGaussPoints (Standard_Integer &) –
  • WorkDegree (Standard_Integer &) –
Return type:

void

OCC.PLib.plib_NivConstr(*args)
  • translates from GeomAbs_Shape to Integer
Parameters:ConstraintOrder (GeomAbs_Shape) –
Return type:int
OCC.PLib.plib_NoDerivativeEvalPolynomial(*args)
  • Same as above with DerivativeOrder = 0;
Parameters:
  • U (float) –
  • Degree (Standard_Integer) –
  • Dimension (Standard_Integer) –
  • DegreeDimension (Standard_Integer) –
  • PolynomialCoeff (float &) –
  • Results (float &) –
Return type:

void

OCC.PLib.plib_NoWeights()
  • Used as argument for a non rational functions
Return type:TColStd_Array1OfReal
OCC.PLib.plib_NoWeights2()
  • Used as argument for a non rational functions
Return type:TColStd_Array2OfReal
OCC.PLib.plib_RationalDerivative(*args)
  • Computes the derivatives of a ratio at order <N> in dimension <Dimension>. <Ders> is an array containing the values of the input derivatives from 0 to Min(<N>,<Degree>). For orders higher than <Degree> the inputcd /s2d1/BMDL/ derivatives are assumed to be 0. Content of <Ders> : x(1),x(2),...,x(Dimension),w x’(1),x’(2),...,x’(Dimension),w’ x’‘(1),x’‘(2),...,x’‘(Dimension),w’’ If <All> is false, only the derivative at order <N> is computed. <RDers> is an array of length Dimension which will contain the result : x(1)/w , x(2)/w , ... derivated <N> times If <All> is true all the derivatives up to order <N> are computed. <RDers> is an array of length Dimension * (N+1) which will contains : x(1)/w , x(2)/w , ... x(1)/w , x(2)/w , ... derivated <1> times x(1)/w , x(2)/w , ... derivated <2> times ... x(1)/w , x(2)/w , ... derivated <N> times Warning: <RDers> must be dimensionned properly.
Parameters:
  • Degree (Standard_Integer) –
  • N (Standard_Integer) –
  • Dimension (Standard_Integer) –
  • Ders (float &) –
  • RDers (float &) –
  • All (bool) – default value is Standard_True
Return type:

void

  • Computes the derivatives of a ratio at order <N> in dimension <Dimension>. <Ders> is an array containing the values of the input derivatives from 0 to Min(<N>,<Degree>). For orders higher than <Degree> the inputcd /s2d1/BMDL/ derivatives are assumed to be 0. Content of <Ders> : x(1),x(2),...,x(Dimension),w x’(1),x’(2),...,x’(Dimension),w’ x’‘(1),x’‘(2),...,x’‘(Dimension),w’’ If <All> is false, only the derivative at order <N> is computed. <RDers> is an array of length Dimension which will contain the result : x(1)/w , x(2)/w , ... derivated <N> times If <All> is true all the derivatives up to order <N> are computed. <RDers> is an array of length Dimension * (N+1) which will contains : x(1)/w , x(2)/w , ... x(1)/w , x(2)/w , ... derivated <1> times x(1)/w , x(2)/w , ... derivated <2> times ... x(1)/w , x(2)/w , ... derivated <N> times Warning: <RDers> must be dimensionned properly.
Parameters:
  • Degree (Standard_Integer) –
  • N (Standard_Integer) –
  • Dimension (Standard_Integer) –
  • Ders (float &) –
  • RDers (float &) –
  • All (bool) – default value is Standard_True
Return type:

void

OCC.PLib.plib_RationalDerivatives(*args)
  • Computes DerivativesRequest derivatives of a ratio at of a BSpline function of degree <Degree> dimension <Dimension>. <PolesDerivatives> is an array containing the values of the input derivatives from 0 to <DerivativeRequest> For orders higher than <Degree> the input derivatives are assumed to be 0. Content of <PoleasDerivatives> : x(1),x(2),...,x(Dimension) x’(1),x’(2),...,x’(Dimension) x’‘(1),x’‘(2),...,x’‘(Dimension) WeightsDerivatives is an array that contains derivatives from 0 to <DerivativeRequest> After returning from the routine the array RationalDerivatives contains the following x(1)/w , x(2)/w , ... x(1)/w , x(2)/w , ... derivated once x(1)/w , x(2)/w , ... twice x(1)/w , x(2)/w , ... derivated <DerivativeRequest> times The array RationalDerivatives and PolesDerivatives can be same since the overwrite is non destructive within the algorithm Warning: <RationalDerivates> must be dimensionned properly.
Parameters:
  • DerivativesRequest (Standard_Integer) –
  • Dimension (Standard_Integer) –
  • PolesDerivatives (float &) –
  • WeightsDerivatives (float &) –
  • RationalDerivates (float &) –
Return type:

void

OCC.PLib.plib_SetPoles(*args)
  • Copy in FP the coordinates of the poles.
Parameters:
  • Poles (TColgp_Array1OfPnt) –
  • FP (TColStd_Array1OfReal &) –
Return type:

void

  • Copy in FP the coordinates of the poles.
Parameters:
  • Poles (TColgp_Array1OfPnt) –
  • Weights (TColStd_Array1OfReal &) –
  • FP (TColStd_Array1OfReal &) –
Return type:

void

  • Copy in FP the coordinates of the poles.
Parameters:
  • Poles (TColgp_Array1OfPnt2d) –
  • FP (TColStd_Array1OfReal &) –
Return type:

void

  • Copy in FP the coordinates of the poles.
Parameters:
  • Poles (TColgp_Array1OfPnt2d) –
  • Weights (TColStd_Array1OfReal &) –
  • FP (TColStd_Array1OfReal &) –
Return type:

void

OCC.PLib.plib_Trimming(*args)
Parameters:
  • U1 (float) –
  • U2 (float) –
  • Coeffs (TColStd_Array1OfReal &) –
  • WCoeffs (TColStd_Array1OfReal &) –
  • U1
  • U2
  • Coeffs
  • WCoeffs
  • U1
  • U2
  • Coeffs
  • WCoeffs
  • U1
  • U2
  • dim (Standard_Integer) –
  • Coeffs
  • WCoeffs
Return type:

void

Return type:

void

Return type:

void

Return type:

void

OCC.PLib.plib_UTrimming(*args)
Parameters:
  • U1 (float) –
  • U2 (float) –
  • Coeffs (TColgp_Array2OfPnt) –
  • WCoeffs (TColStd_Array2OfReal &) –
Return type:

void

OCC.PLib.plib_VTrimming(*args)
Parameters:
  • V1 (float) –
  • V2 (float) –
  • Coeffs (TColgp_Array2OfPnt) –
  • WCoeffs (TColStd_Array2OfReal &) –
Return type:

void