OCC.Geom module

class OCC.Geom.Geom_Axis1Placement(*args)

Bases: OCC.Geom.Geom_AxisPlacement

Ax1()
  • Returns a non transient copy of <self>.
Return type:gp_Ax1
GetHandle()

Geom_Axis1Placement_GetHandle(Geom_Axis1Placement self) -> Handle_Geom_Axis1Placement

Reverse()
  • Reverses the direction of the axis placement.
Return type:None
Reversed()
  • Returns a copy of <self> reversed.
Return type:Handle_Geom_Axis1Placement
thisown

The membership flag

class OCC.Geom.Geom_Axis2Placement(*args)

Bases: OCC.Geom.Geom_AxisPlacement

Ax2()
  • Returns a non transient copy of <self>.
Return type:gp_Ax2
GetHandle()

Geom_Axis2Placement_GetHandle(Geom_Axis2Placement self) -> Handle_Geom_Axis2Placement

SetAx2()
  • Assigns the origin and the three unit vectors of A2 to this coordinate system.
Parameters:A2 (gp_Ax2) –
Return type:None
SetXDirection()
  • Changes the ‘XDirection’ of the axis placement, Vx is the new ‘XDirection’. If Vx is not normal to the main direction then ‘XDirection’ is computed as follow : XDirection = Direction ^ ( Vx ^ Direction). The main direction is not modified. Raised if Vx and ‘Direction’ are parallel.
Parameters:Vx (gp_Dir) –
Return type:None
SetYDirection()
  • Changes the ‘YDirection’ of the axis placement, Vy is the new ‘YDirection’. If Vy is not normal to the main direction then ‘YDirection’ is computed as follow : YDirection = Direction ^ ( Vy ^ Direction). The main direction is not modified. The ‘XDirection’ is modified. Raised if Vy and the main direction are parallel.
Parameters:Vy (gp_Dir) –
Return type:None
XDirection()
  • Returns the ‘XDirection’. This is a unit vector.
Return type:gp_Dir
YDirection()
  • Returns the ‘YDirection’. This is a unit vector.
Return type:gp_Dir
thisown

The membership flag

class OCC.Geom.Geom_AxisPlacement(*args, **kwargs)

Bases: OCC.Geom.Geom_Geometry

Angle()
  • Computes the angular value, in radians, between the ‘main Direction’ of this positioning system and that of positioning system Other. The result is a value between 0 and Pi.
Parameters:Other (Handle_Geom_AxisPlacement &) –
Return type:float
Axis()
  • Returns the main axis of the axis placement. For an ‘Axis2placement’ it is the main axis (Location, Direction ). For an ‘Axis1Placement’ this method returns a copy of <self>.
Return type:gp_Ax1
Direction()
  • Returns the main ‘Direction’ of an axis placement.
Return type:gp_Dir
GetHandle()

Geom_AxisPlacement_GetHandle(Geom_AxisPlacement self) -> Handle_Geom_AxisPlacement

Location()
  • Returns the Location point (origin) of the axis placement.
Return type:gp_Pnt
SetAxis()
  • Assigns A1 as the ‘main Axis’ of this positioning system. This modifies - its origin, and - its ‘main Direction’. If this positioning system is a Geom_Axis2Placement, then its ‘X Direction’ and ‘Y Direction’ are recomputed. Exceptions For a Geom_Axis2Placement: Standard_ConstructionError if A1 and the previous ‘X Direction’ of the coordinate system are parallel.
Parameters:A1 (gp_Ax1) –
Return type:None
SetDirection()
  • Changes the direction of the axis placement. If <self> is an axis placement two axis the main ‘Direction’ is modified and the ‘XDirection’ and ‘YDirection’ are recomputed. Raises ConstructionError only for an axis placement two axis if V and the previous ‘XDirection’ are parallel because it is not possible to calculate the new ‘XDirection’ and the new ‘YDirection’.
Parameters:V (gp_Dir) –
Return type:void
SetLocation()
  • Assigns the point P as the origin of this positioning system.
Parameters:P (gp_Pnt) –
Return type:None
thisown

The membership flag

class OCC.Geom.Geom_BSplineCurve(*args)

Bases: OCC.Geom.Geom_BoundedCurve

Degree()
  • Returns the degree of this BSpline curve. The degree of a Geom_BSplineCurve curve cannot be greater than Geom_BSplineCurve::MaxDegree(). Computation of value and derivatives
Return type:int
FirstUKnotIndex()
  • Returns the index in the knot array of the knot corresponding to the first or last parameter of this BSpline curve. For a BSpline curve, the first (or last) parameter (which gives the start (or end) point of the curve) is a knot value. However, if the multiplicity of the first (or last) knot is less than Degree + 1, where Degree is the degree of the curve, it is not the first (or last) knot of the curve.
Return type:int
GetHandle()

Geom_BSplineCurve_GetHandle(Geom_BSplineCurve self) -> Handle_Geom_BSplineCurve

IncreaseDegree()
  • Increases the degree of this BSpline curve to Degree. As a result, the poles, weights and multiplicities tables are modified; the knots table is not changed. Nothing is done if Degree is less than or equal to the current degree. Exceptions Standard_ConstructionError if Degree is greater than Geom_BSplineCurve::MaxDegree().
Parameters:Degree (Standard_Integer) –
Return type:None
IncreaseMultiplicity()
  • //!Increases the multiplicity of the knot <Index> to <M>. If <M> is lower or equal to the current multiplicity nothing is done. If <M> is higher than the degree the degree is used. If <Index> is not in [FirstUKnotIndex, LastUKnotIndex]
Parameters:
  • Index (Standard_Integer) –
  • M (Standard_Integer) –
Return type:

None

  • //!Increases the multiplicities of the knots in [I1,I2] to <M>. For each knot if <M> is lower or equal to the current multiplicity nothing is done. If <M> is higher than the degree the degree is used. If <I1,I2> are not in [FirstUKnotIndex, LastUKnotIndex]
Parameters:
  • I1 (Standard_Integer) –
  • I2 (Standard_Integer) –
  • M (Standard_Integer) –
Return type:

None

IncrementMultiplicity()
  • //!Increment the multiplicities of the knots in [I1,I2] by <M>. If <M> is not positive nithing is done. For each knot the resulting multiplicity is limited to the Degree. If <I1,I2> are not in [FirstUKnotIndex, LastUKnotIndex]
Parameters:
  • I1 (Standard_Integer) –
  • I2 (Standard_Integer) –
  • M (Standard_Integer) –
Return type:

None

InsertKnot()
  • Inserts a knot value in the sequence of knots. If <U> is an existing knot the multiplicity is increased by <M>. If U is not on the parameter range nothing is done. If the multiplicity is negative or null nothing is done. The new multiplicity is limited to the degree. The tolerance criterion for knots equality is the max of Epsilon(U) and ParametricTolerance.
Parameters:
  • U (float) –
  • M (Standard_Integer) – default value is 1
  • ParametricTolerance (float) – default value is 0.0
  • Add (bool) – default value is Standard_True
Return type:

None

  • Inserts a knot value in the sequence of knots. If <U> is an existing knot the multiplicity is increased by <M>. If U is not on the parameter range nothing is done. If the multiplicity is negative or null nothing is done. The new multiplicity is limited to the degree. The tolerance criterion for knots equality is the max of Epsilon(U) and ParametricTolerance.
Parameters:
  • U (float) –
  • M (Standard_Integer) – default value is 1
  • ParametricTolerance (float) – default value is 0.0
  • Add (bool) – default value is Standard_True
Return type:

None

  • Inserts a knot value in the sequence of knots. If <U> is an existing knot the multiplicity is increased by <M>. If U is not on the parameter range nothing is done. If the multiplicity is negative or null nothing is done. The new multiplicity is limited to the degree. The tolerance criterion for knots equality is the max of Epsilon(U) and ParametricTolerance.
Parameters:
  • U (float) –
  • M (Standard_Integer) – default value is 1
  • ParametricTolerance (float) – default value is 0.0
  • Add (bool) – default value is Standard_True
Return type:

None

  • Inserts a knot value in the sequence of knots. If <U> is an existing knot the multiplicity is increased by <M>. If U is not on the parameter range nothing is done. If the multiplicity is negative or null nothing is done. The new multiplicity is limited to the degree. The tolerance criterion for knots equality is the max of Epsilon(U) and ParametricTolerance.
Parameters:
  • U (float) –
  • M (Standard_Integer) – default value is 1
  • ParametricTolerance (float) – default value is 0.0
  • Add (bool) – default value is Standard_True
Return type:

None

InsertKnots()
  • Inserts a set of knots values in the sequence of knots. For each U = Knots(i), M = Mults(i) If <U> is an existing knot the multiplicity is increased by <M> if <Add> is True, increased to <M> if <Add> is False. If U is not on the parameter range nothing is done. If the multiplicity is negative or null nothing is done. The new multiplicity is limited to the degree. The tolerance criterion for knots equality is the max of Epsilon(U) and ParametricTolerance.
Parameters:
  • Knots (TColStd_Array1OfReal &) –
  • Mults (TColStd_Array1OfInteger &) –
  • ParametricTolerance (float) – default value is 0.0
  • Add (bool) – default value is Standard_False
Return type:

None

  • Inserts a set of knots values in the sequence of knots. For each U = Knots(i), M = Mults(i) If <U> is an existing knot the multiplicity is increased by <M> if <Add> is True, increased to <M> if <Add> is False. If U is not on the parameter range nothing is done. If the multiplicity is negative or null nothing is done. The new multiplicity is limited to the degree. The tolerance criterion for knots equality is the max of Epsilon(U) and ParametricTolerance.
Parameters:
  • Knots (TColStd_Array1OfReal &) –
  • Mults (TColStd_Array1OfInteger &) –
  • ParametricTolerance (float) – default value is 0.0
  • Add (bool) – default value is Standard_False
Return type:

None

  • Inserts a set of knots values in the sequence of knots. For each U = Knots(i), M = Mults(i) If <U> is an existing knot the multiplicity is increased by <M> if <Add> is True, increased to <M> if <Add> is False. If U is not on the parameter range nothing is done. If the multiplicity is negative or null nothing is done. The new multiplicity is limited to the degree. The tolerance criterion for knots equality is the max of Epsilon(U) and ParametricTolerance.
Parameters:
  • Knots (TColStd_Array1OfReal &) –
  • Mults (TColStd_Array1OfInteger &) –
  • ParametricTolerance (float) – default value is 0.0
  • Add (bool) – default value is Standard_False
Return type:

None

IsEqual()
  • Comapare two Bspline curve on identity;
Parameters:
  • theOther (Handle_Geom_BSplineCurve &) –
  • thePreci (float) –
Return type:

bool

IsRational()
  • Returns True if the weights are not identical. The tolerance criterion is Epsilon of the class Real.
Return type:bool
Knot()
  • Returns the knot of range Index. When there is a knot with a multiplicity greater than 1 the knot is not repeated. The method Multiplicity can be used to get the multiplicity of the Knot. Raised if Index < 1 or Index > NbKnots
Parameters:Index (Standard_Integer) –
Return type:float
KnotDistribution()
  • Returns NonUniform or Uniform or QuasiUniform or PiecewiseBezier. If all the knots differ by a positive constant from the preceding knot the BSpline Curve can be : - Uniform if all the knots are of multiplicity 1, - QuasiUniform if all the knots are of multiplicity 1 except for the first and last knot which are of multiplicity Degree + 1, - PiecewiseBezier if the first and last knots have multiplicity Degree + 1 and if interior knots have multiplicity Degree A piecewise Bezier with only two knots is a BezierCurve. else the curve is non uniform. The tolerance criterion is Epsilon from class Real.
Return type:GeomAbs_BSplKnotDistribution
KnotSequence()
  • Returns K, the knots sequence of this BSpline curve. In this sequence, knots with a multiplicity greater than 1 are repeated. In the case of a non-periodic curve the length of the sequence must be equal to the sum of the NbKnots multiplicities of the knots of the curve (where NbKnots is the number of knots of this BSpline curve). This sum is also equal to : NbPoles + Degree + 1 where NbPoles is the number of poles and Degree the degree of this BSpline curve. In the case of a periodic curve, if there are k periodic knots, the period is Knot(k+1) - Knot(1). The initial sequence is built by writing knots 1 to k+1, which are repeated according to their corresponding multiplicities. If Degree is the degree of the curve, the degree of continuity of the curve at the knot of index 1 (or k+1) is equal to c = Degree + 1 - Mult(1). c knots are then inserted at the beginning and end of the initial sequence: - the c values of knots preceding the first item Knot(k+1) in the initial sequence are inserted at the beginning; the period is subtracted from these c values; - the c values of knots following the last item Knot(1) in the initial sequence are inserted at the end; the period is added to these c values. The length of the sequence must therefore be equal to: NbPoles + 2*Degree - Mult(1) + 2. Example For a non-periodic BSpline curve of degree 2 where: - the array of knots is: { k1 k2 k3 k4 }, - with associated multiplicities: { 3 1 2 3 }, the knot sequence is: K = { k1 k1 k1 k2 k3 k3 k4 k4 k4 } For a periodic BSpline curve of degree 4 , which is ‘C1’ continuous at the first knot, and where : - the periodic knots are: { k1 k2 k3 (k4) } (3 periodic knots: the points of parameter k1 and k4 are identical, the period is p = k4 - k1), - with associated multiplicities: { 3 1 2 (3) }, the degree of continuity at knots k1 and k4 is: Degree + 1 - Mult(i) = 2. 2 supplementary knots are added at the beginning and end of the sequence: - at the beginning: the 2 knots preceding k4 minus the period; in this example, this is k3 - p both times; - at the end: the 2 knots following k1 plus the period; in this example, this is k2 + p and k3 + p. The knot sequence is therefore: K = { k3-p k3-p k1 k1 k1 k2 k3 k3 k4 k4 k4 k2+p k3+p } Exceptions Standard_DimensionError if the array K is not of the appropriate length.Returns the knots sequence.
Parameters:K (TColStd_Array1OfReal &) –
Return type:None
Knots()
  • returns the knot values of the B-spline curve; Warning A knot with a multiplicity greater than 1 is not repeated in the knot table. The Multiplicity function can be used to obtain the multiplicity of each knot. Raised if the length of K is not equal to the number of knots.
Parameters:K (TColStd_Array1OfReal &) –
Return type:None
LastUKnotIndex()
  • For a BSpline curve the last parameter (which gives the end point of the curve) is a knot value but if the multiplicity of the last knot index is lower than Degree + 1 it is not the last knot of the curve. This method computes the index of the knot corresponding to the last parameter.
Return type:int
LocalD0()
  • Raised if FromK1 = ToK2. Raised if FromK1 and ToK2 are not in the range [FirstUKnotIndex, LastUKnotIndex].
Parameters:
  • U (float) –
  • FromK1 (Standard_Integer) –
  • ToK2 (Standard_Integer) –
  • P (gp_Pnt) –
Return type:

None

LocalD1()
  • Raised if the local continuity of the curve is not C1 between the knot K1 and the knot K2. Raised if FromK1 = ToK2. Raised if FromK1 and ToK2 are not in the range [FirstUKnotIndex, LastUKnotIndex].
Parameters:
  • U (float) –
  • FromK1 (Standard_Integer) –
  • ToK2 (Standard_Integer) –
  • P (gp_Pnt) –
  • V1 (gp_Vec) –
Return type:

None

LocalD2()
  • Raised if the local continuity of the curve is not C2 between the knot K1 and the knot K2. Raised if FromK1 = ToK2. Raised if FromK1 and ToK2 are not in the range [FirstUKnotIndex, LastUKnotIndex].
Parameters:
  • U (float) –
  • FromK1 (Standard_Integer) –
  • ToK2 (Standard_Integer) –
  • P (gp_Pnt) –
  • V1 (gp_Vec) –
  • V2 (gp_Vec) –
Return type:

None

LocalD3()
  • Raised if the local continuity of the curve is not C3 between the knot K1 and the knot K2. Raised if FromK1 = ToK2. Raised if FromK1 and ToK2 are not in the range [FirstUKnotIndex, LastUKnotIndex].
Parameters:
  • U (float) –
  • FromK1 (Standard_Integer) –
  • ToK2 (Standard_Integer) –
  • P (gp_Pnt) –
  • V1 (gp_Vec) –
  • V2 (gp_Vec) –
  • V3 (gp_Vec) –
Return type:

None

LocalDN()
  • Raised if the local continuity of the curve is not CN between the knot K1 and the knot K2. Raised if FromK1 = ToK2. Raised if N < 1. Raises if FromK1 and ToK2 are not in the range [FirstUKnotIndex, LastUKnotIndex].
Parameters:
  • U (float) –
  • FromK1 (Standard_Integer) –
  • ToK2 (Standard_Integer) –
  • N (Standard_Integer) –
Return type:

gp_Vec

LocalValue()
  • Raised if FromK1 = ToK2. Raised if FromK1 and ToK2 are not in the range [FirstUKnotIndex, LastUKnotIndex].
Parameters:
  • U (float) –
  • FromK1 (Standard_Integer) –
  • ToK2 (Standard_Integer) –
Return type:

gp_Pnt

LocateU()
  • Locates the parametric value U in the sequence of knots. If ‘WithKnotRepetition’ is True we consider the knot’s representation with repetition of multiple knot value, otherwise we consider the knot’s representation with no repetition of multiple knot values. Knots (I1) <= U <= Knots (I2) . if I1 = I2 U is a knot value (the tolerance criterion ParametricTolerance is used). . if I1 < 1 => U < Knots (1) - Abs(ParametricTolerance) . if I2 > NbKnots => U > Knots (NbKnots) + Abs(ParametricTolerance)
Parameters:
  • U (float) –
  • ParametricTolerance (float) –
  • I1 (Standard_Integer &) –
  • I2 (Standard_Integer &) –
  • WithKnotRepetition (bool) – default value is Standard_False
Return type:

None

  • Locates the parametric value U in the sequence of knots. If ‘WithKnotRepetition’ is True we consider the knot’s representation with repetition of multiple knot value, otherwise we consider the knot’s representation with no repetition of multiple knot values. Knots (I1) <= U <= Knots (I2) . if I1 = I2 U is a knot value (the tolerance criterion ParametricTolerance is used). . if I1 < 1 => U < Knots (1) - Abs(ParametricTolerance) . if I2 > NbKnots => U > Knots (NbKnots) + Abs(ParametricTolerance)
Parameters:
  • U (float) –
  • ParametricTolerance (float) –
  • I1 (Standard_Integer &) –
  • I2 (Standard_Integer &) –
  • WithKnotRepetition (bool) – default value is Standard_False
Return type:

None

static MaxDegree()
  • Returns the value of the maximum degree of the normalized B-spline basis functions in this package.
Return type:int
MovePoint()
  • Moves the point of parameter U of this BSpline curve to P. Index1 and Index2 are the indexes in the table of poles of this BSpline curve of the first and last poles designated to be moved. FirstModifiedPole and LastModifiedPole are the indexes of the first and last poles which are effectively modified. In the event of incompatibility between Index1, Index2 and the value U: - no change is made to this BSpline curve, and - the FirstModifiedPole and LastModifiedPole are returned null. Exceptions Standard_OutOfRange if: - Index1 is greater than or equal to Index2, or - Index1 or Index2 is less than 1 or greater than the number of poles of this BSpline curve.
Parameters:
  • U (float) –
  • P (gp_Pnt) –
  • Index1 (Standard_Integer) –
  • Index2 (Standard_Integer) –
  • FirstModifiedPole (Standard_Integer &) –
  • LastModifiedPole (Standard_Integer &) –
Return type:

None

MovePointAndTangent()
  • Move a point with parameter U to P. and makes it tangent at U be Tangent. StartingCondition = -1 means first can move EndingCondition = -1 means last point can move StartingCondition = 0 means the first point cannot move EndingCondition = 0 means the last point cannot move StartingCondition = 1 means the first point and tangent cannot move EndingCondition = 1 means the last point and tangent cannot move and so forth ErrorStatus != 0 means that there are not enought degree of freedom with the constrain to deform the curve accordingly
Parameters:
  • U (float) –
  • P (gp_Pnt) –
  • Tangent (gp_Vec) –
  • Tolerance (float) –
  • StartingCondition (Standard_Integer) –
  • EndingCondition (Standard_Integer) –
  • ErrorStatus (Standard_Integer &) –
Return type:

None

Multiplicities()
  • Returns the multiplicity of the knots of the curve. Raised if the length of M is not equal to NbKnots.
Parameters:M (TColStd_Array1OfInteger &) –
Return type:None
Multiplicity()
  • Returns the multiplicity of the knots of range Index. Raised if Index < 1 or Index > NbKnots
Parameters:Index (Standard_Integer) –
Return type:int
NbKnots()
  • Returns the number of knots. This method returns the number of knot without repetition of multiple knots.
Return type:int
NbPoles()
  • Returns the number of poles
Return type:int
PeriodicNormalization()
  • returns the parameter normalized within the period if the curve is periodic : otherwise does not do anything
Parameters:U (float &) –
Return type:None
Pole()
  • Returns the pole of range Index. Raised if Index < 1 or Index > NbPoles.
Parameters:Index (Standard_Integer) –
Return type:gp_Pnt
Poles()
  • Returns the poles of the B-spline curve; Raised if the length of P is not equal to the number of poles.
Parameters:P (TColgp_Array1OfPnt) –
Return type:None
RemoveKnot()
  • Reduces the multiplicity of the knot of index Index to M. If M is equal to 0, the knot is removed. With a modification of this type, the array of poles is also modified. Two different algorithms are systematically used to compute the new poles of the curve. If, for each pole, the distance between the pole calculated using the first algorithm and the same pole calculated using the second algorithm, is less than Tolerance, this ensures that the curve is not modified by more than Tolerance. Under these conditions, true is returned; otherwise, false is returned. A low tolerance is used to prevent modification of the curve. A high tolerance is used to ‘smooth’ the curve. Exceptions Standard_OutOfRange if Index is outside the bounds of the knots table. pole insertion and pole removing this operation is limited to the Uniform or QuasiUniform BSplineCurve. The knot values are modified . If the BSpline is NonUniform or Piecewise Bezier an exception Construction error is raised.
Parameters:
  • Index (Standard_Integer) –
  • M (Standard_Integer) –
  • Tolerance (float) –
Return type:

bool

Resolution()
  • Computes for this BSpline curve the parametric tolerance UTolerance for a given 3D tolerance Tolerance3D. If f(t) is the equation of this BSpline curve, UTolerance ensures that: | t1 - t0| < Utolerance ===> |f(t1) - f(t0)| < Tolerance3D
Parameters:
  • Tolerance3D (float) –
  • UTolerance (float &) –
Return type:

None

Segment()
  • Modifies this BSpline curve by segmenting it between U1 and U2. Either of these values can be outside the bounds of the curve, but U2 must be greater than U1. All data structure tables of this BSpline curve are modified, but the knots located between U1 and U2 are retained. The degree of the curve is not modified. Warnings : Even if <self> is not closed it can become closed after the segmentation for example if U1 or U2 are out of the bounds of the curve <self> or if the curve makes loop. After the segmentation the length of a curve can be null. raises if U2 < U1.
Parameters:
  • U1 (float) –
  • U2 (float) –
Return type:

None

SetKnot()
  • Modifies this BSpline curve by assigning the value K to the knot of index Index in the knots table. This is a relatively local modification because K must be such that: Knots(Index - 1) < K < Knots(Index + 1) The second syntax allows you also to increase the multiplicity of the knot to M (but it is not possible to decrease the multiplicity of the knot with this function). Standard_ConstructionError if: - K is not such that: Knots(Index - 1) < K < Knots(Index + 1) - M is greater than the degree of this BSpline curve or lower than the previous multiplicity of knot of index Index in the knots table. Standard_OutOfRange if Index is outside the bounds of the knots table.
Parameters:
  • Index (Standard_Integer) –
  • K (float) –
Return type:

None

  • Changes the knot of range Index with its multiplicity. You can increase the multiplicity of a knot but it is not allowed to decrease the multiplicity of an existing knot. Raised if K >= Knots(Index+1) or K <= Knots(Index-1). Raised if M is greater than Degree or lower than the previous multiplicity of knot of range Index. Raised if Index < 1 || Index > NbKnots
Parameters:
  • Index (Standard_Integer) –
  • K (float) –
  • M (Standard_Integer) –
Return type:

None

SetKnots()
  • Modifies this BSpline curve by assigning the array K to its knots table. The multiplicity of the knots is not modified. Exceptions Standard_ConstructionError if the values in the array K are not in ascending order. Standard_OutOfRange if the bounds of the array K are not respectively 1 and the number of knots of this BSpline curve.
Parameters:K (TColStd_Array1OfReal &) –
Return type:None
SetNotPeriodic()
  • Changes this BSpline curve into a non-periodic curve. If this curve is already non-periodic, it is not modified. Note: the poles and knots tables are modified. Warning If this curve is periodic, as the multiplicity of the first and last knots is not modified, and is not equal to Degree + 1, where Degree is the degree of this BSpline curve, the start and end points of the curve are not its first and last poles.
Return type:None
SetOrigin()
  • Assigns the knot of index Index in the knots table as the origin of this periodic BSpline curve. As a consequence, the knots and poles tables are modified. Exceptions Standard_NoSuchObject if this curve is not periodic. Standard_DomainError if Index is outside the bounds of the knots table.
Parameters:Index (Standard_Integer) –
Return type:None
  • Set the origin of a periodic curve at Knot U. If U is not a knot of the BSpline a new knot is inseted. KnotVector and poles are modified. Raised if the curve is not periodic
Parameters:
  • U (float) –
  • Tol (float) –
Return type:

None

SetPeriodic()
  • Changes this BSpline curve into a periodic curve. To become periodic, the curve must first be closed. Next, the knot sequence must be periodic. For this, FirstUKnotIndex and LastUKnotIndex are used to compute I1 and I2, the indexes in the knots array of the knots corresponding to the first and last parameters of this BSpline curve. The period is therefore: Knots(I2) - Knots(I1). Consequently, the knots and poles tables are modified. Exceptions Standard_ConstructionError if this BSpline curve is not closed.
Return type:None
SetPole()
  • Modifies this BSpline curve by assigning P to the pole of index Index in the poles table. Exceptions Standard_OutOfRange if Index is outside the bounds of the poles table. Standard_ConstructionError if Weight is negative or null.
Parameters:
  • Index (Standard_Integer) –
  • P (gp_Pnt) –
Return type:

None

  • Modifies this BSpline curve by assigning P to the pole of index Index in the poles table. This syntax also allows you to modify the weight of the modified pole, which becomes Weight. In this case, if this BSpline curve is non-rational, it can become rational and vice versa. Exceptions Standard_OutOfRange if Index is outside the bounds of the poles table. Standard_ConstructionError if Weight is negative or null.
Parameters:
  • Index (Standard_Integer) –
  • P (gp_Pnt) –
  • Weight (float) –
Return type:

None

SetWeight()
  • Changes the weight for the pole of range Index. If the curve was non rational it can become rational. If the curve was rational it can become non rational. Raised if Index < 1 || Index > NbPoles Raised if Weight <= 0.0
Parameters:
  • Index (Standard_Integer) –
  • Weight (float) –
Return type:

None

Weight()
  • Returns the weight of the pole of range Index . Raised if Index < 1 or Index > NbPoles.
Parameters:Index (Standard_Integer) –
Return type:float
Weights()
  • Returns the weights of the B-spline curve; Raised if the length of W is not equal to NbPoles.
Parameters:W (TColStd_Array1OfReal &) –
Return type:None
thisown

The membership flag

OCC.Geom.Geom_BSplineCurve_MaxDegree()
  • Returns the value of the maximum degree of the normalized B-spline basis functions in this package.
Return type:int
class OCC.Geom.Geom_BSplineSurface(*args)

Bases: OCC.Geom.Geom_BoundedSurface

CheckAndSegment()
  • Segments the surface between U1 and U2 in the U-Direction. between V1 and V2 in the V-Direction. same as Segment but do nothing if U1 and U2 (resp. V1 and V2) are equal to the bounds in U (resp. in V) of <self>. For example, if <self> is periodic in V, it will be always periodic in V after the segmentation if the bounds in V are unchanged Warnings : Even if <self> is not closed it can become closed after the segmentation for example if U1 or U2 are out of the bounds of the surface <self> or if the surface makes loop. raises if U2 < U1 or V2 < V1
Parameters:
  • U1 (float) –
  • U2 (float) –
  • V1 (float) –
  • V2 (float) –
Return type:

None

ExchangeUV()
  • Exchanges the u and v parametric directions on this BSpline surface. As a consequence: - the poles and weights tables are transposed, - the knots and multiplicities tables are exchanged, - degrees of continuity, and rational, periodic and uniform characteristics are exchanged, and - the orientation of the surface is inverted.
Return type:None
FirstUKnotIndex()
  • Computes the Index of the UKnots which gives the first parametric value of the surface in the U direction. The UIso curve corresponding to this value is a boundary curve of the surface.
Return type:int
FirstVKnotIndex()
  • Computes the Index of the VKnots which gives the first parametric value of the surface in the V direction. The VIso curve corresponding to this knot is a boundary curve of the surface.
Return type:int
GetHandle()

Geom_BSplineSurface_GetHandle(Geom_BSplineSurface self) -> Handle_Geom_BSplineSurface

IncreaseDegree()
  • Increases the degrees of this BSpline surface to UDegree and VDegree in the u and v parametric directions respectively. As a result, the tables of poles, weights and multiplicities are modified. The tables of knots is not changed. Note: Nothing is done if the given degree is less than or equal to the current degree in the corresponding parametric direction. Exceptions Standard_ConstructionError if UDegree or VDegree is greater than Geom_BSplineSurface::MaxDegree().
Parameters:
  • UDegree (Standard_Integer) –
  • VDegree (Standard_Integer) –
Return type:

None

IncreaseUMultiplicity()
  • Increases the multiplicity of the knot of range UIndex in the UKnots sequence. M is the new multiplicity. M must be greater than the previous multiplicity and lower or equal to the degree of the surface in the U parametric direction. Raised if M is not in the range [1, UDegree] Raised if UIndex is not in the range [FirstUKnotIndex, LastUKnotIndex] given by the methods with the same name.
Parameters:
  • UIndex (Standard_Integer) –
  • M (Standard_Integer) –
Return type:

None

  • Increases until order M the multiplicity of the set of knots FromI1,...., ToI2 in the U direction. This method can be used to make a B_spline surface into a PiecewiseBezier B_spline surface. If <self> was uniform, it can become non uniform. Raised if FromI1 or ToI2 is out of the range [FirstUKnotIndex, LastUKnotIndex]. M should be greater than the previous multiplicity of the all the knots FromI1,..., ToI2 and lower or equal to the Degree of the surface in the U parametric direction.
Parameters:
  • FromI1 (Standard_Integer) –
  • ToI2 (Standard_Integer) –
  • M (Standard_Integer) –
Return type:

None

IncreaseVMultiplicity()
  • Increases the multiplicity of a knot in the V direction. M is the new multiplicity. M should be greater than the previous multiplicity and lower than the degree of the surface in the V parametric direction. Raised if VIndex is not in the range [FirstVKnotIndex, LastVKnotIndex] given by the methods with the same name.
Parameters:
  • VIndex (Standard_Integer) –
  • M (Standard_Integer) –
Return type:

None

  • Increases until order M the multiplicity of the set of knots FromI1,...., ToI2 in the V direction. This method can be used to make a BSplineSurface into a PiecewiseBezier B_spline surface. If <self> was uniform, it can become non-uniform. Raised if FromI1 or ToI2 is out of the range [FirstVKnotIndex, LastVKnotIndex] given by the methods with the same name. M should be greater than the previous multiplicity of the all the knots FromI1,..., ToI2 and lower or equal to the Degree of the surface in the V parametric direction.
Parameters:
  • FromI1 (Standard_Integer) –
  • ToI2 (Standard_Integer) –
  • M (Standard_Integer) –
Return type:

None

IncrementUMultiplicity()
  • Increments the multiplicity of the consecutives uknots FromI1..ToI2 by step. The multiplicity of each knot FromI1,.....,ToI2 must be lower or equal to the UDegree of the B_spline. Raised if FromI1 or ToI2 is not in the range [FirstUKnotIndex, LastUKnotIndex] Raised if one knot has a multiplicity greater than UDegree.
Parameters:
  • FromI1 (Standard_Integer) –
  • ToI2 (Standard_Integer) –
  • Step (Standard_Integer) –
Return type:

None

IncrementVMultiplicity()
  • Increments the multiplicity of the consecutives vknots FromI1..ToI2 by step. The multiplicity of each knot FromI1,.....,ToI2 must be lower or equal to the VDegree of the B_spline. Raised if FromI1 or ToI2 is not in the range [FirstVKnotIndex, LastVKnotIndex] Raised if one knot has a multiplicity greater than VDegree.
Parameters:
  • FromI1 (Standard_Integer) –
  • ToI2 (Standard_Integer) –
  • Step (Standard_Integer) –
Return type:

None

InsertUKnot()
  • Inserts a knot value in the sequence of UKnots. If U is a knot value this method increases the multiplicity of the knot if the previous multiplicity was lower than M else it does nothing. The tolerance criterion is ParametricTolerance. ParametricTolerance should be greater or equal than Resolution from package gp. Raised if U is out of the bounds [U1, U2] given by the methods Bounds, the criterion ParametricTolerance is used. Raised if M is not in the range [1, UDegree].
Parameters:
  • U (float) –
  • M (Standard_Integer) –
  • ParametricTolerance (float) –
  • Add (bool) – default value is Standard_True
Return type:

None

  • Inserts a knot value in the sequence of UKnots. If U is a knot value this method increases the multiplicity of the knot if the previous multiplicity was lower than M else it does nothing. The tolerance criterion is ParametricTolerance. ParametricTolerance should be greater or equal than Resolution from package gp. Raised if U is out of the bounds [U1, U2] given by the methods Bounds, the criterion ParametricTolerance is used. Raised if M is not in the range [1, UDegree].
Parameters:
  • U (float) –
  • M (Standard_Integer) –
  • ParametricTolerance (float) –
  • Add (bool) – default value is Standard_True
Return type:

None

InsertUKnots()
Parameters:
  • Knots (TColStd_Array1OfReal &) –
  • Mults (TColStd_Array1OfInteger &) –
  • ParametricTolerance (float) – default value is 0.0
  • Add (bool) – default value is Standard_True
  • Knots
  • Mults
  • ParametricTolerance – default value is 0.0
  • Add – default value is Standard_True
  • Knots
  • Mults
  • ParametricTolerance – default value is 0.0
  • Add – default value is Standard_True
Return type:

None

Return type:

None

Return type:

None

InsertVKnot()
  • Inserts a knot value in the sequence of VKnots. If V is a knot value this method increases the multiplicity of the knot if the previous multiplicity was lower than M otherwise it does nothing. The tolerance criterion is ParametricTolerance. ParametricTolerance should be greater or equal than Resolution from package gp. raises if V is out of the Bounds [V1, V2] given by the methods Bounds, the criterion ParametricTolerance is used. raises if M is not in the range [1, VDegree].
Parameters:
  • V (float) –
  • M (Standard_Integer) –
  • ParametricTolerance (float) –
  • Add (bool) – default value is Standard_True
Return type:

None

  • Inserts a knot value in the sequence of VKnots. If V is a knot value this method increases the multiplicity of the knot if the previous multiplicity was lower than M otherwise it does nothing. The tolerance criterion is ParametricTolerance. ParametricTolerance should be greater or equal than Resolution from package gp. raises if V is out of the Bounds [V1, V2] given by the methods Bounds, the criterion ParametricTolerance is used. raises if M is not in the range [1, VDegree].
Parameters:
  • V (float) –
  • M (Standard_Integer) –
  • ParametricTolerance (float) –
  • Add (bool) – default value is Standard_True
Return type:

None

InsertVKnots()
  • Inserts into the knots table for the corresponding parametric direction of this BSpline surface: - the value U, or V, with the multiplicity M (defaulted to 1), or - the values of the array Knots, with their respective multiplicities, Mults. If the knot value to insert already exists in the table, its multiplicity is: - increased by M, if Add is true (the default), or - increased to M, if Add is false. The tolerance criterion used to check the equality of the knots is the larger of the values ParametricTolerance and Standard_Real::Epsilon(val), where val is the knot value to be inserted. Warning - If a given multiplicity coefficient is null, or negative, nothing is done. - The new multiplicity of a knot is limited to the degree of this BSpline surface in the corresponding parametric direction. Exceptions Standard_ConstructionError if a knot value to insert is outside the bounds of this BSpline surface in the specified parametric direction. The comparison uses the precision criterion ParametricTolerance.
Parameters:
  • Knots (TColStd_Array1OfReal &) –
  • Mults (TColStd_Array1OfInteger &) –
  • ParametricTolerance (float) – default value is 0.0
  • Add (bool) – default value is Standard_True
Return type:

None

  • Inserts into the knots table for the corresponding parametric direction of this BSpline surface: - the value U, or V, with the multiplicity M (defaulted to 1), or - the values of the array Knots, with their respective multiplicities, Mults. If the knot value to insert already exists in the table, its multiplicity is: - increased by M, if Add is true (the default), or - increased to M, if Add is false. The tolerance criterion used to check the equality of the knots is the larger of the values ParametricTolerance and Standard_Real::Epsilon(val), where val is the knot value to be inserted. Warning - If a given multiplicity coefficient is null, or negative, nothing is done. - The new multiplicity of a knot is limited to the degree of this BSpline surface in the corresponding parametric direction. Exceptions Standard_ConstructionError if a knot value to insert is outside the bounds of this BSpline surface in the specified parametric direction. The comparison uses the precision criterion ParametricTolerance.
Parameters:
  • Knots (TColStd_Array1OfReal &) –
  • Mults (TColStd_Array1OfInteger &) –
  • ParametricTolerance (float) – default value is 0.0
  • Add (bool) – default value is Standard_True
Return type:

None

  • Inserts into the knots table for the corresponding parametric direction of this BSpline surface: - the value U, or V, with the multiplicity M (defaulted to 1), or - the values of the array Knots, with their respective multiplicities, Mults. If the knot value to insert already exists in the table, its multiplicity is: - increased by M, if Add is true (the default), or - increased to M, if Add is false. The tolerance criterion used to check the equality of the knots is the larger of the values ParametricTolerance and Standard_Real::Epsilon(val), where val is the knot value to be inserted. Warning - If a given multiplicity coefficient is null, or negative, nothing is done. - The new multiplicity of a knot is limited to the degree of this BSpline surface in the corresponding parametric direction. Exceptions Standard_ConstructionError if a knot value to insert is outside the bounds of this BSpline surface in the specified parametric direction. The comparison uses the precision criterion ParametricTolerance.
Parameters:
  • Knots (TColStd_Array1OfReal &) –
  • Mults (TColStd_Array1OfInteger &) –
  • ParametricTolerance (float) – default value is 0.0
  • Add (bool) – default value is Standard_True
Return type:

None

IsCacheValid()
  • Tells whether the Cache is valid for the given parameter Warnings : the parameter must be normalized within the period if the curve is periodic. Otherwise the answer will be false
Parameters:
  • UParameter (float) –
  • VParameter (float) –
Return type:

bool

IsURational()
Return type:bool
IsVRational()
Return type:bool
LastUKnotIndex()
  • Computes the Index of the UKnots which gives the last parametric value of the surface in the U direction. The UIso curve corresponding to this knot is a boundary curve of the surface.
Return type:int
LastVKnotIndex()
  • Computes the Index of the VKnots which gives the last parametric value of the surface in the V direction. The VIso curve corresponding to this knot is a boundary curve of the surface.
Return type:int
LocalD0()
  • Raised if FromUK1 = ToUK2 or FromVK1 = ToVK2. Raised if FromUK1, ToUK2 are not in the range [FirstUKnotIndex, LastUKnotIndex] or if FromVK1, ToVK2 are not in the range [FirstVKnotIndex, LastVKnotIndex]
Parameters:
  • U (float) –
  • V (float) –
  • FromUK1 (Standard_Integer) –
  • ToUK2 (Standard_Integer) –
  • FromVK1 (Standard_Integer) –
  • ToVK2 (Standard_Integer) –
  • P (gp_Pnt) –
Return type:

None

LocalD1()
  • Raised if the local continuity of the surface is not C1 between the knots FromUK1, ToUK2 and FromVK1, ToVK2. Raised if FromUK1 = ToUK2 or FromVK1 = ToVK2. Raised if FromUK1, ToUK2 are not in the range [FirstUKnotIndex, LastUKnotIndex] or if FromVK1, ToVK2 are not in the range [FirstVKnotIndex, LastVKnotIndex]
Parameters:
  • U (float) –
  • V (float) –
  • FromUK1 (Standard_Integer) –
  • ToUK2 (Standard_Integer) –
  • FromVK1 (Standard_Integer) –
  • ToVK2 (Standard_Integer) –
  • P (gp_Pnt) –
  • D1U (gp_Vec) –
  • D1V (gp_Vec) –
Return type:

None

LocalD2()
  • Raised if the local continuity of the surface is not C2 between the knots FromUK1, ToUK2 and FromVK1, ToVK2. Raised if FromUK1 = ToUK2 or FromVK1 = ToVK2. Raised if FromUK1, ToUK2 are not in the range [FirstUKnotIndex, LastUKnotIndex] or if FromVK1, ToVK2 are not in the range [FirstVKnotIndex, LastVKnotIndex]
Parameters:
  • U (float) –
  • V (float) –
  • FromUK1 (Standard_Integer) –
  • ToUK2 (Standard_Integer) –
  • FromVK1 (Standard_Integer) –
  • ToVK2 (Standard_Integer) –
  • P (gp_Pnt) –
  • D1U (gp_Vec) –
  • D1V (gp_Vec) –
  • D2U (gp_Vec) –
  • D2V (gp_Vec) –
  • D2UV (gp_Vec) –
Return type:

None

LocalD3()
  • Raised if the local continuity of the surface is not C3 between the knots FromUK1, ToUK2 and FromVK1, ToVK2. Raised if FromUK1 = ToUK2 or FromVK1 = ToVK2. Raised if FromUK1, ToUK2 are not in the range [FirstUKnotIndex, LastUKnotIndex] or if FromVK1, ToVK2 are not in the range [FirstVKnotIndex, LastVKnotIndex]
Parameters:
  • U (float) –
  • V (float) –
  • FromUK1 (Standard_Integer) –
  • ToUK2 (Standard_Integer) –
  • FromVK1 (Standard_Integer) –
  • ToVK2 (Standard_Integer) –
  • P (gp_Pnt) –
  • D1U (gp_Vec) –
  • D1V (gp_Vec) –
  • D2U (gp_Vec) –
  • D2V (gp_Vec) –
  • D2UV (gp_Vec) –
  • D3U (gp_Vec) –
  • D3V (gp_Vec) –
  • D3UUV (gp_Vec) –
  • D3UVV (gp_Vec) –
Return type:

None

LocalDN()
  • Raised if the local continuity of the surface is not CNu between the knots FromUK1, ToUK2 and CNv between the knots FromVK1, ToVK2. Raised if FromUK1 = ToUK2 or FromVK1 = ToVK2. Raised if FromUK1, ToUK2 are not in the range [FirstUKnotIndex, LastUKnotIndex] or if FromVK1, ToVK2 are not in the range [FirstVKnotIndex, LastVKnotIndex]
Parameters:
  • U (float) –
  • V (float) –
  • FromUK1 (Standard_Integer) –
  • ToUK2 (Standard_Integer) –
  • FromVK1 (Standard_Integer) –
  • ToVK2 (Standard_Integer) –
  • Nu (Standard_Integer) –
  • Nv (Standard_Integer) –
Return type:

gp_Vec

LocalValue()
  • Computes the point of parameter U, V on the BSpline surface patch defines between the knots UK1 UK2, VK1, VK2. U can be out of the bounds [Knot UK1, Knot UK2] and V can be outof the bounds [Knot VK1, Knot VK2] but for the computation we only use the definition of the surface between these knot values. Raises if FromUK1 = ToUK2 or FromVK1 = ToVK2. Raises if FromUK1, ToUK2 are not in the range [FirstUKnotIndex, LastUKnotIndex] or if FromVK1, ToVK2 are not in the range [FirstVKnotIndex, LastVKnotIndex]
Parameters:
  • U (float) –
  • V (float) –
  • FromUK1 (Standard_Integer) –
  • ToUK2 (Standard_Integer) –
  • FromVK1 (Standard_Integer) –
  • ToVK2 (Standard_Integer) –
Return type:

gp_Pnt

LocateU()
  • Locates the parametric value U in the sequence of UKnots. If ‘WithKnotRepetition’ is True we consider the knot’s representation with repetition of multiple knot value, otherwise we consider the knot’s representation with no repetition of multiple knot values. UKnots (I1) <= U <= UKnots (I2) . if I1 = I2 U is a knot value (the tolerance criterion ParametricTolerance is used). . if I1 < 1 => U < UKnots(1) - Abs(ParametricTolerance) . if I2 > NbUKnots => U > UKnots(NbUKnots)+Abs(ParametricTolerance)
Parameters:
  • U (float) –
  • ParametricTolerance (float) –
  • I1 (Standard_Integer &) –
  • I2 (Standard_Integer &) –
  • WithKnotRepetition (bool) – default value is Standard_False
Return type:

None

  • Locates the parametric value U in the sequence of UKnots. If ‘WithKnotRepetition’ is True we consider the knot’s representation with repetition of multiple knot value, otherwise we consider the knot’s representation with no repetition of multiple knot values. UKnots (I1) <= U <= UKnots (I2) . if I1 = I2 U is a knot value (the tolerance criterion ParametricTolerance is used). . if I1 < 1 => U < UKnots(1) - Abs(ParametricTolerance) . if I2 > NbUKnots => U > UKnots(NbUKnots)+Abs(ParametricTolerance)
Parameters:
  • U (float) –
  • ParametricTolerance (float) –
  • I1 (Standard_Integer &) –
  • I2 (Standard_Integer &) –
  • WithKnotRepetition (bool) – default value is Standard_False
Return type:

None

LocateV()
  • Locates the parametric value U in the sequence of knots. If ‘WithKnotRepetition’ is True we consider the knot’s representation with repetition of multiple knot value, otherwise we consider the knot’s representation with no repetition of multiple knot values. VKnots (I1) <= V <= VKnots (I2) . if I1 = I2 V is a knot value (the tolerance criterion ParametricTolerance is used). . if I1 < 1 => V < VKnots(1) - Abs(ParametricTolerance) . if I2 > NbVKnots => V > VKnots(NbVKnots)+Abs(ParametricTolerance) poles insertion and removing The following methods are available only if the surface is Uniform or QuasiUniform in the considered direction The knot repartition is modified.
Parameters:
  • V (float) –
  • ParametricTolerance (float) –
  • I1 (Standard_Integer &) –
  • I2 (Standard_Integer &) –
  • WithKnotRepetition (bool) – default value is Standard_False
Return type:

None

  • Locates the parametric value U in the sequence of knots. If ‘WithKnotRepetition’ is True we consider the knot’s representation with repetition of multiple knot value, otherwise we consider the knot’s representation with no repetition of multiple knot values. VKnots (I1) <= V <= VKnots (I2) . if I1 = I2 V is a knot value (the tolerance criterion ParametricTolerance is used). . if I1 < 1 => V < VKnots(1) - Abs(ParametricTolerance) . if I2 > NbVKnots => V > VKnots(NbVKnots)+Abs(ParametricTolerance) poles insertion and removing The following methods are available only if the surface is Uniform or QuasiUniform in the considered direction The knot repartition is modified.
Parameters:
  • V (float) –
  • ParametricTolerance (float) –
  • I1 (Standard_Integer &) –
  • I2 (Standard_Integer &) –
  • WithKnotRepetition (bool) – default value is Standard_False
Return type:

None

static MaxDegree()
  • Returns the value of the maximum degree of the normalized B-spline basis functions in the u and v directions.
Return type:int
MovePoint()
  • Move a point with parameter U and V to P. given u,v as parameters) to reach a new position UIndex1, UIndex2, VIndex1, VIndex2: indicates the poles which can be moved if Problem in BSplineBasis calculation, no change for the curve and UFirstIndex, VLastIndex = 0 VFirstIndex, VLastIndex = 0 Raised if UIndex1 < UIndex2 or VIndex1 < VIndex2 or UIndex1 < 1 || UIndex1 > NbUPoles or UIndex2 < 1 || UIndex2 > NbUPoles VIndex1 < 1 || VIndex1 > NbVPoles or VIndex2 < 1 || VIndex2 > NbVPoles characteristics of the surface
Parameters:
  • U (float) –
  • V (float) –
  • P (gp_Pnt) –
  • UIndex1 (Standard_Integer) –
  • UIndex2 (Standard_Integer) –
  • VIndex1 (Standard_Integer) –
  • VIndex2 (Standard_Integer) –
  • UFirstIndex (Standard_Integer &) –
  • ULastIndex (Standard_Integer &) –
  • VFirstIndex (Standard_Integer &) –
  • VLastIndex (Standard_Integer &) –
Return type:

None

NbUKnots()
  • Returns the number of knots in the U direction.
Return type:int
NbUPoles()
  • Returns number of poles in the U direction.
Return type:int
NbVKnots()
  • Returns the number of knots in the V direction.
Return type:int
NbVPoles()
  • Returns the number of poles in the V direction.
Return type:int
PeriodicNormalization()
  • returns the parameter normalized within the period if the surface is periodic : otherwise does not do anything
Parameters:
  • U (float &) –
  • V (float &) –
Return type:

None

Pole()
  • Returns the pole of range (UIndex, VIndex). Raised if UIndex < 1 or UIndex > NbUPoles or VIndex < 1 or VIndex > NbVPoles.
Parameters:
  • UIndex (Standard_Integer) –
  • VIndex (Standard_Integer) –
Return type:

gp_Pnt

Poles()
  • Returns the poles of the B-spline surface. Raised if the length of P in the U and V direction is not equal to NbUpoles and NbVPoles.
Parameters:P (TColgp_Array2OfPnt) –
Return type:None
RemoveUKnot()
Parameters:
  • Index (Standard_Integer) –
  • M (Standard_Integer) –
  • Tolerance (float) –
Return type:

bool

RemoveVKnot()
  • Reduces to M the multiplicity of the knot of index Index in the given parametric direction. If M is 0, the knot is removed. With a modification of this type, the table of poles is also modified. Two different algorithms are used systematically to compute the new poles of the surface. For each pole, the distance between the pole calculated using the first algorithm and the same pole calculated using the second algorithm, is checked. If this distance is less than Tolerance it ensures that the surface is not modified by more than Tolerance. Under these conditions, the function returns true; otherwise, it returns false. A low tolerance prevents modification of the surface. A high tolerance ‘smoothes’ the surface. Exceptions Standard_OutOfRange if Index is outside the bounds of the knots table of this BSpline surface.
Parameters:
  • Index (Standard_Integer) –
  • M (Standard_Integer) –
  • Tolerance (float) –
Return type:

bool

Resolution()
  • Computes two tolerance values for this BSpline surface, based on the given tolerance in 3D space Tolerance3D. The tolerances computed are: - UTolerance in the u parametric direction, and - VTolerance in the v parametric direction. If f(u,v) is the equation of this BSpline surface, UTolerance and VTolerance guarantee that : | u1 - u0 | < UTolerance and | v1 - v0 | < VTolerance ====> |f (u1,v1) - f (u0,v0)| < Tolerance3D
Parameters:
  • Tolerance3D (float) –
  • UTolerance (float &) –
  • VTolerance (float &) –
Return type:

None

Segment()
  • Segments the surface between U1 and U2 in the U-Direction. between V1 and V2 in the V-Direction. The control points are modified, the first and the last point are not the same. Warnings : Even if <self> is not closed it can become closed after the segmentation for example if U1 or U2 are out of the bounds of the surface <self> or if the surface makes loop. raises if U2 < U1 or V2 < V1
Parameters:
  • U1 (float) –
  • U2 (float) –
  • V1 (float) –
  • V2 (float) –
Return type:

None

SetPole()
  • Substitutes the pole of range (UIndex, VIndex) with P. If the surface is rational the weight of range (UIndex, VIndex) is not modified. Raised if UIndex < 1 or UIndex > NbUPoles or VIndex < 1 or VIndex > NbVPoles.
Parameters:
  • UIndex (Standard_Integer) –
  • VIndex (Standard_Integer) –
  • P (gp_Pnt) –
Return type:

None

  • Substitutes the pole and the weight of range (UIndex, VIndex) with P and W. Raised if UIndex < 1 or UIndex > NbUPoles or VIndex < 1 or VIndex > NbVPoles. Raised if Weight <= Resolution from package gp.
Parameters:
  • UIndex (Standard_Integer) –
  • VIndex (Standard_Integer) –
  • P (gp_Pnt) –
  • Weight (float) –
Return type:

None

SetPoleCol()
  • Changes a column of poles or a part of this column. Raised if Vindex < 1 or VIndex > NbVPoles. Raised if CPoles.Lower() < 1 or CPoles.Upper() > NbUPoles.
Parameters:
  • VIndex (Standard_Integer) –
  • CPoles (TColgp_Array1OfPnt) –
Return type:

None

  • Changes a column of poles or a part of this column with the corresponding weights. If the surface was rational it can become non rational. If the surface was non rational it can become rational. Raised if Vindex < 1 or VIndex > NbVPoles. Raised if CPoles.Lower() < 1 or CPoles.Upper() > NbUPoles Raised if the bounds of CPoleWeights are not the same as the bounds of CPoles. Raised if one of the weight value of CPoleWeights is lower or equal to Resolution from package gp.
Parameters:
  • VIndex (Standard_Integer) –
  • CPoles (TColgp_Array1OfPnt) –
  • CPoleWeights (TColStd_Array1OfReal &) –
Return type:

None

SetPoleRow()
  • Changes a row of poles or a part of this row with the corresponding weights. If the surface was rational it can become non rational. If the surface was non rational it can become rational. Raised if Uindex < 1 or UIndex > NbUPoles. Raised if CPoles.Lower() < 1 or CPoles.Upper() > NbVPoles raises if the bounds of CPoleWeights are not the same as the bounds of CPoles. Raised if one of the weight value of CPoleWeights is lower or equal to Resolution from package gp.
Parameters:
  • UIndex (Standard_Integer) –
  • CPoles (TColgp_Array1OfPnt) –
  • CPoleWeights (TColStd_Array1OfReal &) –
Return type:

None

  • Changes a row of poles or a part of this row. Raised if Uindex < 1 or UIndex > NbUPoles. Raised if CPoles.Lower() < 1 or CPoles.Upper() > NbVPoles.
Parameters:
  • UIndex (Standard_Integer) –
  • CPoles (TColgp_Array1OfPnt) –
Return type:

None

SetUKnot()
  • Substitutes the UKnots of range UIndex with K. Raised if UIndex < 1 or UIndex > NbUKnots Raised if K >= UKnots(UIndex+1) or K <= UKnots(UIndex-1)
Parameters:
  • UIndex (Standard_Integer) –
  • K (float) –
Return type:

None

  • Changes the value of the UKnots of range UIndex and increases its multiplicity. Raised if UIndex is not in the range [FirstUKnotIndex, LastUKnotIndex] given by the methods with the same name. Raised if K >= UKnots(UIndex+1) or K <= UKnots(UIndex-1) M must be lower than UDegree and greater than the previous multiplicity of the knot of range UIndex.
Parameters:
  • UIndex (Standard_Integer) –
  • K (float) –
  • M (Standard_Integer) –
Return type:

None

SetUKnots()
  • Changes all the U-knots of the surface. The multiplicity of the knots are not modified. Raised if there is an index such that UK (Index+1) <= UK (Index). Raised if UK.Lower() < 1 or UK.Upper() > NbUKnots
Parameters:UK (TColStd_Array1OfReal &) –
Return type:None
SetUNotPeriodic()
Return type:None
SetUOrigin()
  • Assigns the knot of index Index in the knots table in the corresponding parametric direction to be the origin of this periodic BSpline surface. As a consequence, the knots and poles tables are modified. Exceptions Standard_NoSuchObject if this BSpline surface is not periodic in the given parametric direction. Standard_DomainError if Index is outside the bounds of the knots table in the given parametric direction.
Parameters:Index (Standard_Integer) –
Return type:None
SetUPeriodic()
  • Sets the surface U periodic.
Return type:None
SetVKnot()
  • Substitutes the VKnots of range VIndex with K. Raised if VIndex < 1 or VIndex > NbVKnots Raised if K >= VKnots(VIndex+1) or K <= VKnots(VIndex-1)
Parameters:
  • VIndex (Standard_Integer) –
  • K (float) –
Return type:

None

  • Changes the value of the VKnots of range VIndex and increases its multiplicity. Raised if VIndex is not in the range [FirstVKnotIndex, LastVKnotIndex] given by the methods with the same name. Raised if K >= VKnots(VIndex+1) or K <= VKnots(VIndex-1) M must be lower than VDegree and greater than the previous multiplicity of the knot of range VIndex.
Parameters:
  • VIndex (Standard_Integer) –
  • K (float) –
  • M (Standard_Integer) –
Return type:

None

SetVKnots()
  • Changes all the V-knots of the surface. The multiplicity of the knots are not modified. Raised if there is an index such that VK (Index+1) <= VK (Index). Raised if VK.Lower() < 1 or VK.Upper() > NbVKnots
Parameters:VK (TColStd_Array1OfReal &) –
Return type:None
SetVNotPeriodic()
  • Modifies this surface to be periodic in the u (or v) parametric direction. To become periodic in a given parametric direction a surface must be closed in that parametric direction, and the knot sequence relative to that direction must be periodic. To generate this periodic sequence of knots, the functions FirstUKnotIndex and LastUKnotIndex (or FirstVKnotIndex and LastVKnotIndex) are used to compute I1 and I2. These are the indexes, in the knot array associated with the given parametric direction, of the knots that correspond to the first and last parameters of this BSpline surface in the given parametric direction. Hence the period is: Knots(I1) - Knots(I2) As a result, the knots and poles tables are modified. Exceptions Standard_ConstructionError if the surface is not closed in the given parametric direction.
Return type:None
SetVOrigin()
  • Assigns the knot of index Index in the knots table in the corresponding parametric direction to be the origin of this periodic BSpline surface. As a consequence, the knots and poles tables are modified. Exceptions Standard_NoSuchObject if this BSpline surface is not periodic in the given parametric direction. Standard_DomainError if Index is outside the bounds of the knots table in the given parametric direction.
Parameters:Index (Standard_Integer) –
Return type:None
SetVPeriodic()
  • Modifies this surface to be periodic in the u (or v) parametric direction. To become periodic in a given parametric direction a surface must be closed in that parametric direction, and the knot sequence relative to that direction must be periodic. To generate this periodic sequence of knots, the functions FirstUKnotIndex and LastUKnotIndex (or FirstVKnotIndex and LastVKnotIndex) are used to compute I1 and I2. These are the indexes, in the knot array associated with the given parametric direction, of the knots that correspond to the first and last parameters of this BSpline surface in the given parametric direction. Hence the period is: Knots(I1) - Knots(I2) As a result, the knots and poles tables are modified. Exceptions Standard_ConstructionError if the surface is not closed in the given parametric direction.
Return type:None
SetWeight()
  • Changes the weight of the pole of range UIndex, VIndex. If the surface was non rational it can become rational. If the surface was rational it can become non rational. Raised if UIndex < 1 or UIndex > NbUPoles or VIndex < 1 or VIndex > NbVPoles Raised if weight is lower or equal to Resolution from package gp
Parameters:
  • UIndex (Standard_Integer) –
  • VIndex (Standard_Integer) –
  • Weight (float) –
Return type:

None

SetWeightCol()
  • Changes a column of weights of a part of this column. Raised if VIndex < 1 or VIndex > NbVPoles Raised if CPoleWeights.Lower() < 1 or CPoleWeights.Upper() > NbUPoles. Raised if a weight value is lower or equal to Resolution from package gp.
Parameters:
  • VIndex (Standard_Integer) –
  • CPoleWeights (TColStd_Array1OfReal &) –
Return type:

None

SetWeightRow()
  • Changes a row of weights or a part of this row. Raised if UIndex < 1 or UIndex > NbUPoles Raised if CPoleWeights.Lower() < 1 or CPoleWeights.Upper() > NbVPoles. Raised if a weight value is lower or equal to Resolution from package gp.
Parameters:
  • UIndex (Standard_Integer) –
  • CPoleWeights (TColStd_Array1OfReal &) –
Return type:

None

UDegree()
  • Returns the degree of the normalized B-splines Ni,n in the U direction.
Return type:int
UIso()
  • Computes the U isoparametric curve. A B-spline curve is returned.
Parameters:U (float) –
Return type:Handle_Geom_Curve
  • Computes the U isoparametric curve. If CheckRational=False, no try to make it non-rational. A B-spline curve is returned.
Parameters:
  • U (float) –
  • CheckRational (bool) –
Return type:

Handle_Geom_Curve

UKnot()
  • Returns the Knot value of range UIndex. Raised if UIndex < 1 or UIndex > NbUKnots
Parameters:UIndex (Standard_Integer) –
Return type:float
UKnotDistribution()
  • Returns NonUniform or Uniform or QuasiUniform or PiecewiseBezier. If all the knots differ by a positive constant from the preceding knot in the U direction the B-spline surface can be : - Uniform if all the knots are of multiplicity 1, - QuasiUniform if all the knots are of multiplicity 1 except for the first and last knot which are of multiplicity Degree + 1, - PiecewiseBezier if the first and last knots have multiplicity Degree + 1 and if interior knots have multiplicity Degree otherwise the surface is non uniform in the U direction The tolerance criterion is Resolution from package gp.
Return type:GeomAbs_BSplKnotDistribution
UKnotSequence()
  • Returns the uknots sequence. In this sequence the knots with a multiplicity greater than 1 are repeated. Example : Ku = {k1, k1, k1, k2, k3, k3, k4, k4, k4} Raised if the length of Ku is not equal to NbUPoles + UDegree + 1
Parameters:Ku (TColStd_Array1OfReal &) –
Return type:None
UKnots()
  • Returns the knots in the U direction. Raised if the length of Ku is not equal to the number of knots in the U direction.
Parameters:Ku (TColStd_Array1OfReal &) –
Return type:None
UMultiplicities()
  • Returns the multiplicities of the knots in the U direction. Raised if the length of Mu is not equal to the number of knots in the U direction.
Parameters:Mu (TColStd_Array1OfInteger &) –
Return type:None
UMultiplicity()
  • Returns the multiplicity value of knot of range UIndex in the u direction. Raised if UIndex < 1 or UIndex > NbUKnots.
Parameters:UIndex (Standard_Integer) –
Return type:int
VDegree()
  • Returns the degree of the normalized B-splines Ni,d in the V direction.
Return type:int
VIso()
  • Computes the V isoparametric curve. A B-spline curve is returned.
Parameters:V (float) –
Return type:Handle_Geom_Curve
  • Computes the V isoparametric curve. If CheckRational=False, no try to make it non-rational. A B-spline curve is returned. transformations
Parameters:
  • V (float) –
  • CheckRational (bool) –
Return type:

Handle_Geom_Curve

VKnot()
  • Returns the Knot value of range VIndex.
Parameters:VIndex (Standard_Integer) –
Return type:float
VKnotDistribution()
  • Returns NonUniform or Uniform or QuasiUniform or PiecewiseBezier. If all the knots differ by a positive constant from the preceding knot in the V direction the B-spline surface can be : - Uniform if all the knots are of multiplicity 1, - QuasiUniform if all the knots are of multiplicity 1 except for the first and last knot which are of multiplicity Degree + 1, - PiecewiseBezier if the first and last knots have multiplicity Degree + 1 and if interior knots have multiplicity Degree otherwise the surface is non uniform in the V direction. The tolerance criterion is Resolution from package gp.
Return type:GeomAbs_BSplKnotDistribution
VKnotSequence()
  • Returns the vknots sequence. In this sequence the knots with a multiplicity greater than 1 are repeated. Example : Kv = {k1, k1, k1, k2, k3, k3, k4, k4, k4} Raised if the length of Kv is not equal to NbVPoles + VDegree + 1
Parameters:Kv (TColStd_Array1OfReal &) –
Return type:None
VKnots()
  • Returns the knots in the V direction. Raised if the length of Kv is not equal to the number of knots in the V direction.
Parameters:Kv (TColStd_Array1OfReal &) –
Return type:None
VMultiplicities()
  • Returns the multiplicities of the knots in the V direction. Raised if the length of Mv is not equal to the number of knots in the V direction.
Parameters:Mv (TColStd_Array1OfInteger &) –
Return type:None
VMultiplicity()
  • Returns the multiplicity value of knot of range VIndex in the v direction. Raised if VIndex < 1 or VIndex > NbVKnots
Parameters:VIndex (Standard_Integer) –
Return type:int
Weight()
  • Returns the weight value of range UIndex, VIndex. Raised if UIndex < 1 or UIndex > NbUPoles or VIndex < 1 or VIndex > NbVPoles.
Parameters:
  • UIndex (Standard_Integer) –
  • VIndex (Standard_Integer) –
Return type:

float

Weights()
  • Returns the weights of the B-spline surface. Raised if the length of W in the U and V direction is not equal to NbUPoles and NbVPoles. value and derivatives computation
Parameters:W (TColStd_Array2OfReal &) –
Return type:None
thisown

The membership flag

OCC.Geom.Geom_BSplineSurface_MaxDegree()
  • Returns the value of the maximum degree of the normalized B-spline basis functions in the u and v directions.
Return type:int
class OCC.Geom.Geom_BezierCurve(*args)

Bases: OCC.Geom.Geom_BoundedCurve

Degree()
  • Returns the polynomial degree of the curve. it is the number of poles - 1 point P and derivatives (V1, V2, V3) computation The Bezier Curve has a Polynomial representation so the parameter U can be out of the bounds of the curve.
Return type:int
GetHandle()

Geom_BezierCurve_GetHandle(Geom_BezierCurve self) -> Handle_Geom_BezierCurve

Increase()
  • Increases the degree of a bezier curve. Degree is the new degree of <self>. Raises ConstructionError if Degree is greater than MaxDegree or lower than 2 or lower than the initial degree of <self>.
Parameters:Degree (Standard_Integer) –
Return type:None
InsertPoleAfter()
  • Inserts a pole P after the pole of range Index. If the curve <self> is rational the weight value for the new pole of range Index is 1.0. raised if Index is not in the range [1, NbPoles] raised if the resulting number of poles is greater than MaxDegree + 1.
Parameters:
  • Index (Standard_Integer) –
  • P (gp_Pnt) –
Return type:

None

  • Inserts a pole with its weight in the set of poles after the pole of range Index. If the curve was non rational it can become rational if all the weights are not identical. Raised if Index is not in the range [1, NbPoles] Raised if the resulting number of poles is greater than MaxDegree + 1. Raised if Weight is lower or equal to Resolution from package gp.
Parameters:
  • Index (Standard_Integer) –
  • P (gp_Pnt) –
  • Weight (float) –
Return type:

None

InsertPoleBefore()
  • Inserts a pole P before the pole of range Index. If the curve <self> is rational the weight value for the new pole of range Index is 1.0. Raised if Index is not in the range [1, NbPoles] Raised if the resulting number of poles is greater than MaxDegree + 1.
Parameters:
  • Index (Standard_Integer) –
  • P (gp_Pnt) –
Return type:

None

  • Inserts a pole with its weight in the set of poles after the pole of range Index. If the curve was non rational it can become rational if all the weights are not identical. Raised if Index is not in the range [1, NbPoles] Raised if the resulting number of poles is greater than MaxDegree + 1. Raised if Weight is lower or equal to Resolution from package gp.
Parameters:
  • Index (Standard_Integer) –
  • P (gp_Pnt) –
  • Weight (float) –
Return type:

None

IsRational()
  • Returns false if all the weights are identical. The tolerance criterion is Resolution from package gp.
Return type:bool
static MaxDegree()
  • Returns the value of the maximum polynomial degree of any Geom_BezierCurve curve. This value is 25.
Return type:int
NbPoles()
  • Returns the number of poles of this Bezier curve.
Return type:int
Pole()
  • Returns the pole of range Index. Raised if Index is not in the range [1, NbPoles]
Parameters:Index (Standard_Integer) –
Return type:gp_Pnt
Poles()
  • Returns all the poles of the curve. Raised if the length of P is not equal to the number of poles.
Parameters:P (TColgp_Array1OfPnt) –
Return type:None
RemovePole()
  • Removes the pole of range Index. If the curve was rational it can become non rational. Raised if Index is not in the range [1, NbPoles] Raised if Degree is lower than 2.
Parameters:Index (Standard_Integer) –
Return type:None
Resolution()
  • Computes for this Bezier curve the parametric tolerance UTolerance for a given 3D tolerance Tolerance3D. If f(t) is the equation of this Bezier curve, UTolerance ensures that: |t1-t0| < UTolerance ===> |f(t1)-f(t0)| < Tolerance3D
Parameters:
  • Tolerance3D (float) –
  • UTolerance (float &) –
Return type:

None

Segment()
  • Segments the curve between U1 and U2 which can be out of the bounds of the curve. The curve is oriented from U1 to U2. The control points are modified, the first and the last point are not the same but the parametrization range is [0, 1] else it could not be a Bezier curve. Warnings : Even if <self> is not closed it can become closed after the segmentation for example if U1 or U2 are out of the bounds of the curve <self> or if the curve makes loop. After the segmentation the length of a curve can be null.
Parameters:
  • U1 (float) –
  • U2 (float) –
Return type:

None

SetPole()
  • Substitutes the pole of range index with P. If the curve <self> is rational the weight of range Index is not modified. raiseD if Index is not in the range [1, NbPoles]
Parameters:
  • Index (Standard_Integer) –
  • P (gp_Pnt) –
Return type:

None

  • Substitutes the pole and the weights of range Index. If the curve <self> is not rational it can become rational if all the weights are not identical. If the curve was rational it can become non rational if all the weights are identical. Raised if Index is not in the range [1, NbPoles] Raised if Weight <= Resolution from package gp
Parameters:
  • Index (Standard_Integer) –
  • P (gp_Pnt) –
  • Weight (float) –
Return type:

None

SetWeight()
  • Changes the weight of the pole of range Index. If the curve <self> is not rational it can become rational if all the weights are not identical. If the curve was rational it can become non rational if all the weights are identical. Raised if Index is not in the range [1, NbPoles] Raised if Weight <= Resolution from package gp
Parameters:
  • Index (Standard_Integer) –
  • Weight (float) –
Return type:

None

Weight()
  • Returns the weight of range Index. Raised if Index is not in the range [1, NbPoles]
Parameters:Index (Standard_Integer) –
Return type:float
Weights()
  • Returns all the weights of the curve. Raised if the length of W is not equal to the number of poles.
Parameters:W (TColStd_Array1OfReal &) –
Return type:None
thisown

The membership flag

OCC.Geom.Geom_BezierCurve_MaxDegree()
  • Returns the value of the maximum polynomial degree of any Geom_BezierCurve curve. This value is 25.
Return type:int
class OCC.Geom.Geom_BezierSurface(*args)

Bases: OCC.Geom.Geom_BoundedSurface

ExchangeUV()
  • Exchanges the direction U and V on a Bezier surface As a consequence: - the poles and weights tables are transposed, - degrees, rational characteristics and so on are exchanged between the two parametric directions, and - the orientation of the surface is reversed.
Return type:None
GetHandle()

Geom_BezierSurface_GetHandle(Geom_BezierSurface self) -> Handle_Geom_BezierSurface

Increase()
  • Increases the degree of this Bezier surface in the two parametric directions. Raised if UDegree < UDegree <self> or VDegree < VDegree <self> Raised if the degree of the surface is greater than MaxDegree in one of the two directions U or V.
Parameters:
  • UDeg (Standard_Integer) –
  • VDeg (Standard_Integer) –
Return type:

None

InsertPoleColAfter()
  • Inserts a column of poles. If the surface is rational the weights values associated with CPoles are equal defaulted to 1. Raised if Vindex < 1 or VIndex > NbVPoles. raises if VDegree is greater than MaxDegree. raises if the Length of CPoles is not equal to NbUPoles
Parameters:
  • VIndex (Standard_Integer) –
  • CPoles (TColgp_Array1OfPnt) –
Return type:

None

  • Inserts a column of poles and weights. If the surface was non-rational it can become rational. Raised if Vindex < 1 or VIndex > NbVPoles. Raised if . VDegree is greater than MaxDegree. . the Length of CPoles is not equal to NbUPoles . a weight value is lower or equal to Resolution from package gp
Parameters:
  • VIndex (Standard_Integer) –
  • CPoles (TColgp_Array1OfPnt) –
  • CPoleWeights (TColStd_Array1OfReal &) –
Return type:

None

InsertPoleColBefore()
  • Inserts a column of poles. If the surface is rational the weights values associated with CPoles are equal defaulted to 1. Raised if Vindex < 1 or VIndex > NbVPoles. Raised if VDegree is greater than MaxDegree. Raised if the Length of CPoles is not equal to NbUPoles
Parameters:
  • VIndex (Standard_Integer) –
  • CPoles (TColgp_Array1OfPnt) –
Return type:

None

  • Inserts a column of poles and weights. If the surface was non-rational it can become rational. Raised if Vindex < 1 or VIndex > NbVPoles. Raised if : . VDegree is greater than MaxDegree. . the Length of CPoles is not equal to NbUPoles . a weight value is lower or equal to Resolution from package gp
Parameters:
  • VIndex (Standard_Integer) –
  • CPoles (TColgp_Array1OfPnt) –
  • CPoleWeights (TColStd_Array1OfReal &) –
Return type:

None

InsertPoleRowAfter()
  • Inserts a row of poles. If the surface is rational the weights values associated with CPoles are equal defaulted to 1. Raised if Uindex < 1 or UIndex > NbUPoles. Raised if UDegree is greater than MaxDegree. Raised if the Length of CPoles is not equal to NbVPoles
Parameters:
  • UIndex (Standard_Integer) –
  • CPoles (TColgp_Array1OfPnt) –
Return type:

None

  • Inserts a row of poles and weights. If the surface was non-rational it can become rational. Raised if Uindex < 1 or UIndex > NbUPoles. Raised if : . UDegree is greater than MaxDegree. . the Length of CPoles is not equal to NbVPoles . a weight value is lower or equal to Resolution from package gp
Parameters:
  • UIndex (Standard_Integer) –
  • CPoles (TColgp_Array1OfPnt) –
  • CPoleWeights (TColStd_Array1OfReal &) –
Return type:

None

InsertPoleRowBefore()
  • Inserts a row of poles. If the surface is rational the weights values associated with CPoles are equal defaulted to 1. Raised if Uindex < 1 or UIndex > NbUPoles. Raised if UDegree is greater than MaxDegree. Raised if the Length of CPoles is not equal to NbVPoles
Parameters:
  • UIndex (Standard_Integer) –
  • CPoles (TColgp_Array1OfPnt) –
Return type:

None

  • Inserts a row of poles and weights. If the surface was non-rational it can become rational. Raised if Uindex < 1 or UIndex > NbUPoles. Raised if : . UDegree is greater than MaxDegree. . the Length of CPoles is not equal to NbVPoles . a weight value is lower or equal to Resolution from pacakage gp
Parameters:
  • UIndex (Standard_Integer) –
  • CPoles (TColgp_Array1OfPnt) –
  • CPoleWeights (TColStd_Array1OfReal &) –
Return type:

None

IsURational()
Return type:bool
IsVRational()
Return type:bool
static MaxDegree()
  • Returns the value of the maximum polynomial degree of a Bezier surface. This value is 25.
Return type:int
NbUPoles()
  • Returns the number of poles in the U direction.
Return type:int
NbVPoles()
  • Returns the number of poles in the V direction.
Return type:int
Pole()
  • Returns the pole of range UIndex, VIndex Raised if UIndex < 1 or UIndex > NbUPoles, or VIndex < 1 or VIndex > NbVPoles.
Parameters:
  • UIndex (Standard_Integer) –
  • VIndex (Standard_Integer) –
Return type:

gp_Pnt

Poles()
  • Returns the poles of the Bezier surface. Raised if the length of P in the U an V direction is not equal to NbUPoles and NbVPoles.
Parameters:P (TColgp_Array2OfPnt) –
Return type:None
RemovePoleCol()
  • Removes a column of poles. If the surface was rational it can become non-rational. Raised if NbVPoles <= 2 after removing, a Bezier surface must have at least two columns of poles. Raised if Vindex < 1 or VIndex > NbVPoles
Parameters:VIndex (Standard_Integer) –
Return type:None
RemovePoleRow()
  • Removes a row of poles. If the surface was rational it can become non-rational. Raised if NbUPoles <= 2 after removing, a Bezier surface must have at least two rows of poles. Raised if Uindex < 1 or UIndex > NbUPoles
Parameters:UIndex (Standard_Integer) –
Return type:None
Resolution()
  • Computes two tolerance values for this Bezier surface, based on the given tolerance in 3D space Tolerance3D. The tolerances computed are: - UTolerance in the u parametric direction, and - VTolerance in the v parametric direction. If f(u,v) is the equation of this Bezier surface, UTolerance and VTolerance guarantee that: | u1 - u0 | < UTolerance and | v1 - v0 | < VTolerance ====> |f (u1,v1) - f (u0,v0)| < Tolerance3D
Parameters:
  • Tolerance3D (float) –
  • UTolerance (float &) –
  • VTolerance (float &) –
Return type:

None

Segment()
  • Modifies this Bezier surface by segmenting it between U1 and U2 in the u parametric direction, and between V1 and V2 in the v parametric direction. U1, U2, V1, and V2 can be outside the bounds of this surface. - U1 and U2 isoparametric Bezier curves, segmented between V1 and V2, become the two bounds of the surface in the v parametric direction (0. and 1. u isoparametric curves). - V1 and V2 isoparametric Bezier curves, segmented between U1 and U2, become the two bounds of the surface in the u parametric direction (0. and 1. v isoparametric curves). The poles and weights tables are modified, but the degree of this surface in the u and v parametric directions does not change. U1 can be greater than U2, and V1 can be greater than V2. In these cases, the corresponding parametric direction is inverted. The orientation of the surface is inverted if one (and only one) parametric direction is inverted.
Parameters:
  • U1 (float) –
  • U2 (float) –
  • V1 (float) –
  • V2 (float) –
Return type:

None

SetPole()
  • Modifies a pole value. If the surface is rational the weight of range (UIndex, VIndex) is not modified. Raised if UIndex < 1 or UIndex > NbUPoles or VIndex < 1 or VIndex > NbVPoles.
Parameters:
  • UIndex (Standard_Integer) –
  • VIndex (Standard_Integer) –
  • P (gp_Pnt) –
Return type:

None

  • Substitutes the pole and the weight of range UIndex, VIndex. If the surface <self> is not rational it can become rational. if the surface was rational it can become non-rational. raises if UIndex < 1 or UIndex > NbUPoles or VIndex < 1 or VIndex > NbVPoles. Raised if Weight <= Resolution from package gp.
Parameters:
  • UIndex (Standard_Integer) –
  • VIndex (Standard_Integer) –
  • P (gp_Pnt) –
  • Weight (float) –
Return type:

None

SetPoleCol()
  • Modifies a column of poles. The length of CPoles can be lower but not greater than NbUPoles so you can modify just a part of the column. Raised if VIndex < 1 or VIndex > NbVPoles Raised if CPoles.Lower() < 1 or CPoles.Upper() > NbUPoles
Parameters:
  • VIndex (Standard_Integer) –
  • CPoles (TColgp_Array1OfPnt) –
Return type:

None

  • Modifies a column of poles. If the surface was rational it can become non-rational If the surface was non-rational it can become rational. The length of CPoles can be lower but not greater than NbUPoles so you can modify just a part of the column. Raised if VIndex < 1 or VIndex > NbVPoles Raised if CPoles.Lower() < 1 or CPoles.Upper() > NbUPoles Raised if CPoleWeights and CPoles have not the same bounds. Raised if one of the weight value CPoleWeights (i) is lower or equal to Resolution from package gp.
Parameters:
  • VIndex (Standard_Integer) –
  • CPoles (TColgp_Array1OfPnt) –
  • CPoleWeights (TColStd_Array1OfReal &) –
Return type:

None

SetPoleRow()
  • Modifies a row of poles. The length of CPoles can be lower but not greater than NbVPoles so you can modify just a part of the row. Raised if UIndex < 1 or UIndex > NbUPoles Raised if CPoles.Lower() < 1 or CPoles.Upper() > NbVPoles
Parameters:
  • UIndex (Standard_Integer) –
  • CPoles (TColgp_Array1OfPnt) –
Return type:

None

  • Modifies a row of poles and weights. If the surface was rational it can become non-rational. If the surface was non-rational it can become rational. The length of CPoles can be lower but not greater than NbVPoles so you can modify just a part of the row. Raised if UIndex < 1 or UIndex > NbUPoles Raised if CPoles.Lower() < 1 or CPoles.Upper() > NbVPoles Raised if CPoleWeights and CPoles have not the same bounds. Raised if one of the weight value CPoleWeights (i) is lower or equal to Resolution from gp.
Parameters:
  • UIndex (Standard_Integer) –
  • CPoles (TColgp_Array1OfPnt) –
  • CPoleWeights (TColStd_Array1OfReal &) –
Return type:

None

SetWeight()
  • Modifies the weight of the pole of range UIndex, VIndex. If the surface was non-rational it can become rational. If the surface was rational it can become non-rational. Raised if UIndex < 1 or UIndex > NbUPoles or VIndex < 1 or VIndex > NbVPoles. Raised if Weight <= Resolution from package gp.
Parameters:
  • UIndex (Standard_Integer) –
  • VIndex (Standard_Integer) –
  • Weight (float) –
Return type:

None

SetWeightCol()
  • Modifies a column of weights. If the surface was rational it can become non-rational. If the surface was non-rational it can become rational. The length of CPoleWeights can be lower but not greater than NbUPoles. Raised if VIndex < 1 or VIndex > NbVPoles Raised if CPoleWeights.Lower() < 1 or CPoleWeights.Upper() > NbUPoles Raised if one of the weight value CPoleWeights (i) is lower or equal to Resolution from package gp.
Parameters:
  • VIndex (Standard_Integer) –
  • CPoleWeights (TColStd_Array1OfReal &) –
Return type:

None

SetWeightRow()
  • Modifies a row of weights. If the surface was rational it can become non-rational. If the surface was non-rational it can become rational. The length of CPoleWeights can be lower but not greater than NbVPoles. Raised if UIndex < 1 or UIndex > NbUPoles Raised if CPoleWeights.Lower() < 1 or CPoleWeights.Upper() > NbVPoles Raised if one of the weight value CPoleWeights (i) is lower or equal to Resolution from package gp.
Parameters:
  • UIndex (Standard_Integer) –
  • CPoleWeights (TColStd_Array1OfReal &) –
Return type:

None

UDegree()
  • Returns the degree of the surface in the U direction it is NbUPoles - 1
Return type:int
VDegree()
  • Returns the degree of the surface in the V direction it is NbVPoles - 1
Return type:int
Weight()
  • Returns the weight of range UIndex, VIndex Raised if UIndex < 1 or UIndex > NbUPoles, or VIndex < 1 or VIndex > NbVPoles.
Parameters:
  • UIndex (Standard_Integer) –
  • VIndex (Standard_Integer) –
Return type:

float

Weights()
  • Returns the weights of the Bezier surface. Raised if the length of W in the U an V direction is not equal to NbUPoles and NbVPoles.
Parameters:W (TColStd_Array2OfReal &) –
Return type:None
thisown

The membership flag

OCC.Geom.Geom_BezierSurface_MaxDegree()
  • Returns the value of the maximum polynomial degree of a Bezier surface. This value is 25.
Return type:int
class OCC.Geom.Geom_BoundedCurve(*args, **kwargs)

Bases: OCC.Geom.Geom_Curve

EndPoint()
  • Returns the end point of the curve.
Return type:gp_Pnt
GetHandle()

Geom_BoundedCurve_GetHandle(Geom_BoundedCurve self) -> Handle_Geom_BoundedCurve

StartPoint()
  • Returns the start point of the curve.
Return type:gp_Pnt
thisown

The membership flag

class OCC.Geom.Geom_BoundedSurface(*args, **kwargs)

Bases: OCC.Geom.Geom_Surface

GetHandle()

Geom_BoundedSurface_GetHandle(Geom_BoundedSurface self) -> Handle_Geom_BoundedSurface

thisown

The membership flag

class OCC.Geom.Geom_CartesianPoint(*args)

Bases: OCC.Geom.Geom_Point

GetHandle()

Geom_CartesianPoint_GetHandle(Geom_CartesianPoint self) -> Handle_Geom_CartesianPoint

SetCoord()
  • Assigns the coordinates X, Y and Z to this point.
Parameters:
  • X (float) –
  • Y (float) –
  • Z (float) –
Return type:

None

SetPnt()
  • Set <self> to P.X(), P.Y(), P.Z() coordinates.
Parameters:P (gp_Pnt) –
Return type:None
SetX()
  • Changes the X coordinate of me.
Parameters:X (float) –
Return type:None
SetY()
  • Changes the Y coordinate of me.
Parameters:Y (float) –
Return type:None
SetZ()
  • Changes the Z coordinate of me.
Parameters:Z (float) –
Return type:None
thisown

The membership flag

class OCC.Geom.Geom_Circle(*args)

Bases: OCC.Geom.Geom_Conic

Circ()
  • returns the non transient circle from gp with the same geometric properties as <self>.
Return type:gp_Circ
GetHandle()

Geom_Circle_GetHandle(Geom_Circle self) -> Handle_Geom_Circle

Radius()
  • Returns the radius of this circle.
Return type:float
SetCirc()
  • Set <self> so that <self> has the same geometric properties as C.
Parameters:C (gp_Circ) –
Return type:None
SetRadius()
  • Assigns the value R to the radius of this circle. Note: it is possible to have a circle with a radius equal to 0.0. Exceptions - Standard_ConstructionError if R is negative.
Parameters:R (float) –
Return type:None
thisown

The membership flag

class OCC.Geom.Geom_Conic(*args, **kwargs)

Bases: OCC.Geom.Geom_Curve

Axis()
  • Returns the ‘main Axis’ of this conic. This axis is normal to the plane of the conic.
Return type:gp_Ax1
Eccentricity()
  • Returns the eccentricity value of the conic e. e = 0 for a circle 0 < e < 1 for an ellipse (e = 0 if MajorRadius = MinorRadius) e > 1 for a hyperbola e = 1 for a parabola Exceptions Standard_DomainError in the case of a hyperbola if its major radius is null.
Return type:float
GetHandle()

Geom_Conic_GetHandle(Geom_Conic self) -> Handle_Geom_Conic

Location()
  • Returns the location point of the conic. For the circle, the ellipse and the hyperbola it is the center of the conic. For the parabola it is the Apex of the parabola.
Return type:gp_Pnt
Position()
  • Returns the local coordinates system of the conic. The main direction of the Axis2Placement is normal to the plane of the conic. The X direction of the Axis2placement is in the plane of the conic and corresponds to the origin for the conic’s parametric value u.
Return type:gp_Ax2
SetAxis()
  • Changes the orientation of the conic’s plane. The normal axis to the plane is A1. The XAxis and the YAxis are recomputed. raised if the A1 is parallel to the XAxis of the conic.
Parameters:A1 (gp_Ax1) –
Return type:None
SetLocation()
  • changes the location point of the conic.
Parameters:P (gp_Pnt) –
Return type:None
SetPosition()
  • changes the local coordinate system of the conic.
Parameters:A2 (gp_Ax2) –
Return type:None
XAxis()
  • Returns the XAxis of the conic. This axis defines the origin of parametrization of the conic. This axis is perpendicular to the Axis of the conic. This axis and the Yaxis define the plane of the conic.
Return type:gp_Ax1
YAxis()
  • Returns the YAxis of the conic. The YAxis is perpendicular to the Xaxis. This axis and the Xaxis define the plane of the conic.
Return type:gp_Ax1
thisown

The membership flag

class OCC.Geom.Geom_ConicalSurface(*args)

Bases: OCC.Geom.Geom_ElementarySurface

Apex()
  • Computes the apex of this cone. It is on the negative side of the axis of revolution of this cone if the half-angle at the apex is positive, and on the positive side of the ‘main Axis’ if the half-angle is negative.
Return type:gp_Pnt
Coefficients()
  • Returns the coefficients of the implicit equation of the quadric in the absolute cartesian coordinate system : These coefficients are normalized. A1.X**2 + A2.Y**2 + A3.Z**2 + 2.(B1.X.Y + B2.X.Z + B3.Y.Z) + 2.(C1.X + C2.Y + C3.Z) + D = 0.0
Parameters:
  • A1 (float &) –
  • A2 (float &) –
  • A3 (float &) –
  • B1 (float &) –
  • B2 (float &) –
  • B3 (float &) –
  • C1 (float &) –
  • C2 (float &) –
  • C3 (float &) –
  • D (float &) –
Return type:

None

Cone()
  • returns a non transient cone with the same geometric properties as <self>.
Return type:gp_Cone
GetHandle()

Geom_ConicalSurface_GetHandle(Geom_ConicalSurface self) -> Handle_Geom_ConicalSurface

RefRadius()
  • Returns the reference radius of this cone. The reference radius is the radius of the circle formed by the intersection of this cone and its reference plane (i.e. the plane defined by the origin, ‘X Direction’ and ‘Y Direction’ of the local coordinate system of this cone). If the apex of this cone is on the origin of the local coordinate system of this cone, the returned value is 0.
Return type:float
SemiAngle()
  • returns the semi-angle of the conical surface ]0.0, PI/2[.
Return type:float
SetCone()
  • Set <self> so that <self> has the same geometric properties as C.
Parameters:C (gp_Cone) –
Return type:None
SetRadius()
  • Changes the radius of the conical surface in the placement plane (Z = 0, V = 0). The local coordinate system is not modified. Raised if R < 0.0
Parameters:R (float) –
Return type:None
SetSemiAngle()
  • Changes the semi angle of the conical surface. Raised if Ang < Resolution or Ang >= PI/2 - Resolution
Parameters:Ang (float) –
Return type:None
thisown

The membership flag

class OCC.Geom.Geom_Curve(*args, **kwargs)

Bases: OCC.Geom.Geom_Geometry

Continuity()
  • It is the global continuity of the curve C0 : only geometric continuity, C1 : continuity of the first derivative all along the Curve, C2 : continuity of the second derivative all along the Curve, C3 : continuity of the third derivative all along the Curve, G1 : tangency continuity all along the Curve, G2 : curvature continuity all along the Curve, CN : the order of continuity is infinite.
Return type:GeomAbs_Shape
D0()
  • Returns in P the point of parameter U. If the curve is periodic then the returned point is P(U) with U = Ustart + (U - Uend) where Ustart and Uend are the parametric bounds of the curve. Raised only for the ‘OffsetCurve’ if it is not possible to compute the current point. For example when the first derivative on the basis curve and the offset direction are parallel.
Parameters:
  • U (float) –
  • P (gp_Pnt) –
Return type:

void

D1()
  • Returns the point P of parameter U and the first derivative V1. Raised if the continuity of the curve is not C1.
Parameters:
  • U (float) –
  • P (gp_Pnt) –
  • V1 (gp_Vec) –
Return type:

void

D2()
  • Returns the point P of parameter U, the first and second derivatives V1 and V2. Raised if the continuity of the curve is not C2.
Parameters:
  • U (float) –
  • P (gp_Pnt) –
  • V1 (gp_Vec) –
  • V2 (gp_Vec) –
Return type:

void

D3()
  • Returns the point P of parameter U, the first, the second and the third derivative. Raised if the continuity of the curve is not C3.
Parameters:
  • U (float) –
  • P (gp_Pnt) –
  • V1 (gp_Vec) –
  • V2 (gp_Vec) –
  • V3 (gp_Vec) –
Return type:

void

DN()
  • The returned vector gives the value of the derivative for the order of derivation N. Raised if the continuity of the curve is not CN. Raised if the derivative cannot be computed easily. e.g. rational bspline and n > 3. Raised if N < 1.
Parameters:
  • U (float) –
  • N (Standard_Integer) –
Return type:

gp_Vec

FirstParameter()
  • Returns the value of the first parameter. Warnings : It can be RealFirst from package Standard if the curve is infinite
Return type:float
GetHandle()

Geom_Curve_GetHandle(Geom_Curve self) -> Handle_Geom_Curve

IsCN()
  • Returns true if the degree of continuity of this curve is at least N. Exceptions - Standard_RangeError if N is less than 0.
Parameters:N (Standard_Integer) –
Return type:bool
IsClosed()
  • Returns true if the curve is closed. Some curves such as circle are always closed, others such as line are never closed (by definition). Some Curves such as OffsetCurve can be closed or not. These curves are considered as closed if the distance between the first point and the last point of the curve is lower or equal to the Resolution from package gp wich is a fixed criterion independant of the application.
Return type:bool
IsPeriodic()
  • Is the parametrization of the curve periodic ? It is possible only if the curve is closed and if the following relation is satisfied : for each parametric value U the distance between the point P(u) and the point P (u + T) is lower or equal to Resolution from package gp, T is the period and must be a constant. There are three possibilities : . the curve is never periodic by definition (SegmentLine) . the curve is always periodic by definition (Circle) . the curve can be defined as periodic (BSpline). In this case a function SetPeriodic allows you to give the shape of the curve. The general rule for this case is : if a curve can be periodic or not the default periodicity set is non periodic and you have to turn (explicitly) the curve into a periodic curve if you want the curve to be periodic.
Return type:bool
LastParameter()
  • Returns the value of the last parameter. Warnings : It can be RealLast from package Standard if the curve is infinite
Return type:float
ParametricTransformation()
  • Returns a coefficient to compute the parameter on the transformed curve for the transform of the point on <self>. Transformed(T)->Value(U * ParametricTransformation(T)) is the same point as Value(U).Transformed(T) This methods returns 1. It can be redefined. For example on the Line.
Parameters:T (gp_Trsf) –
Return type:float
Period()
  • Returns the period of this curve. Exceptions Standard_NoSuchObject if this curve is not periodic.
Return type:float
Reverse()
  • Changes the direction of parametrization of <self>. The ‘FirstParameter’ and the ‘LastParameter’ are not changed but the orientation of the curve is modified. If the curve is bounded the StartPoint of the initial curve becomes the EndPoint of the reversed curve and the EndPoint of the initial curve becomes the StartPoint of the reversed curve.
Return type:void
Reversed()
  • Returns a copy of <self> reversed.
Return type:Handle_Geom_Curve
ReversedParameter()
  • Returns the parameter on the reversed curve for the point of parameter U on <self>. me->Reversed()->Value(me->ReversedParameter(U)) is the same point as me->Value(U)
Parameters:U (float) –
Return type:float
TransformedParameter()
  • Returns the parameter on the transformed curve for the transform of the point of parameter U on <self>. me->Transformed(T)->Value(me->TransformedParameter(U,T)) is the same point as me->Value(U).Transformed(T) This methods returns <U> It can be redefined. For example on the Line.
Parameters:
  • U (float) –
  • T (gp_Trsf) –
Return type:

float

Value()
  • Computes the point of parameter U on <self>. If the curve is periodic then the returned point is P(U) with U = Ustart + (U - Uend) where Ustart and Uend are the parametric bounds of the curve. it is implemented with D0. Raised only for the ‘OffsetCurve’ if it is not possible to compute the current point. For example when the first derivative on the basis curve and the offset direction are parallel.
Parameters:U (float) –
Return type:gp_Pnt
thisown

The membership flag

class OCC.Geom.Geom_CylindricalSurface(*args)

Bases: OCC.Geom.Geom_ElementarySurface

Coefficients()
  • Returns the coefficients of the implicit equation of the quadric in the absolute cartesian coordinate system : These coefficients are normalized. A1.X**2 + A2.Y**2 + A3.Z**2 + 2.(B1.X.Y + B2.X.Z + B3.Y.Z) + 2.(C1.X + C2.Y + C3.Z) + D = 0.0
Parameters:
  • A1 (float &) –
  • A2 (float &) –
  • A3 (float &) –
  • B1 (float &) –
  • B2 (float &) –
  • B3 (float &) –
  • C1 (float &) –
  • C2 (float &) –
  • C3 (float &) –
  • D (float &) –
Return type:

None

Cylinder()
  • returns a non transient cylinder with the same geometric properties as <self>.
Return type:gp_Cylinder
GetHandle()

Geom_CylindricalSurface_GetHandle(Geom_CylindricalSurface self) -> Handle_Geom_CylindricalSurface

Radius()
  • Returns the radius of this cylinder.
Return type:float
SetCylinder()
  • Set <self> so that <self> has the same geometric properties as C.
Parameters:C (gp_Cylinder) –
Return type:None
SetRadius()
  • Changes the radius of the cylinder. Raised if R < 0.0
Parameters:R (float) –
Return type:None
thisown

The membership flag

class OCC.Geom.Geom_Direction(*args)

Bases: OCC.Geom.Geom_Vector

Dir()
  • Returns the non transient direction with the same coordinates as <self>.
Return type:gp_Dir
GetHandle()

Geom_Direction_GetHandle(Geom_Direction self) -> Handle_Geom_Direction

SetCoord()
  • Sets <self> to X,Y,Z coordinates. Raised if Sqrt( X*X + Y*Y + Z*Z) <= Resolution from gp.
Parameters:
  • X (float) –
  • Y (float) –
  • Z (float) –
Return type:

None

SetDir()
  • Converts the gp_Dir unit vector V into this unit vector.
Parameters:V (gp_Dir) –
Return type:None
SetX()
  • Changes the X coordinate of <self>. Raised if Sqrt( X*X + Y*Y + Z*Z) <= Resolution from gp.
Parameters:X (float) –
Return type:None
SetY()
  • Changes the Y coordinate of <self>. Raised if Sqrt( X*X + Y*Y + Z*Z) <= Resolution from gp.
Parameters:Y (float) –
Return type:None
SetZ()
  • Changes the Z coordinate of <self>. Raised if Sqrt( X*X + Y*Y + Z*Z) <= Resolution from gp.
Parameters:Z (float) –
Return type:None
thisown

The membership flag

class OCC.Geom.Geom_ElementarySurface(*args, **kwargs)

Bases: OCC.Geom.Geom_Surface

Axis()
  • Returns the main axis of the surface (ZAxis).
Return type:gp_Ax1
GetHandle()

Geom_ElementarySurface_GetHandle(Geom_ElementarySurface self) -> Handle_Geom_ElementarySurface

Location()
  • Returns the location point of the local coordinate system of the surface.
Return type:gp_Pnt
Position()
  • Returns the local coordinates system of the surface.
Return type:gp_Ax3
SetAxis()
  • Changes the main axis (ZAxis) of the elementary surface. Raised if the direction of A1 is parallel to the XAxis of the coordinate system of the surface.
Parameters:A1 (gp_Ax1) –
Return type:None
SetLocation()
  • Changes the location of the local coordinates system of the surface.
Parameters:Loc (gp_Pnt) –
Return type:None
SetPosition()
  • Changes the local coordinates system of the surface.
Parameters:A3 (gp_Ax3) –
Return type:None
thisown

The membership flag

class OCC.Geom.Geom_Ellipse(*args)

Bases: OCC.Geom.Geom_Conic

Directrix1()
  • This directrix is the line normal to the XAxis of the ellipse in the local plane (Z = 0) at a distance d = MajorRadius / e from the center of the ellipse, where e is the eccentricity of the ellipse. This line is parallel to the ‘YAxis’. The intersection point between directrix1 and the ‘XAxis’ is the ‘Location’ point of the directrix1. This point is on the positive side of the ‘XAxis’. Raised if Eccentricity = 0.0. (The ellipse degenerates into a circle)
Return type:gp_Ax1
Directrix2()
  • This line is obtained by the symmetrical transformation of ‘Directrix1’ with respect to the ‘YAxis’ of the ellipse. Raised if Eccentricity = 0.0. (The ellipse degenerates into a circle).
Return type:gp_Ax1
Elips()
  • returns the non transient ellipse from gp with the same
Return type:gp_Elips
Focal()
  • Computes the focal distance. It is the distance between the the two focus of the ellipse.
Return type:float
Focus1()
  • Returns the first focus of the ellipse. This focus is on the positive side of the ‘XAxis’ of the ellipse.
Return type:gp_Pnt
Focus2()
  • Returns the second focus of the ellipse. This focus is on the negative side of the ‘XAxis’ of the ellipse.
Return type:gp_Pnt
GetHandle()

Geom_Ellipse_GetHandle(Geom_Ellipse self) -> Handle_Geom_Ellipse

MajorRadius()
  • Returns the major radius of this ellipse.
Return type:float
MinorRadius()
  • Returns the minor radius of this ellipse.
Return type:float
Parameter()
  • Returns p = (1 - e * e) * MajorRadius where e is the eccentricity of the ellipse. Returns 0 if MajorRadius = 0
Return type:float
SetElips()
  • Converts the gp_Elips ellipse E into this ellipse.
Parameters:E (gp_Elips) –
Return type:None
SetMajorRadius()
  • Assigns a value to the major radius of this ellipse. ConstructionError raised if MajorRadius < MinorRadius.
Parameters:MajorRadius (float) –
Return type:None
SetMinorRadius()
  • Assigns a value to the minor radius of this ellipse. ConstructionError raised if MajorRadius < MinorRadius or if MinorRadius < 0.
Parameters:MinorRadius (float) –
Return type:None
thisown

The membership flag

class OCC.Geom.Geom_Geometry(*args, **kwargs)

Bases: OCC.MMgt.MMgt_TShared

Copy()
  • Creates a new object which is a copy of this geometric object.
Return type:Handle_Geom_Geometry
GetHandle()

Geom_Geometry_GetHandle(Geom_Geometry self) -> Handle_Geom_Geometry

Mirror()
  • Performs the symmetrical transformation of a Geometry with respect to the point P which is the center of the symmetry.
Parameters:P (gp_Pnt) –
Return type:None
  • Performs the symmetrical transformation of a Geometry with respect to an axis placement which is the axis of the symmetry.
Parameters:A1 (gp_Ax1) –
Return type:None
  • Performs the symmetrical transformation of a Geometry with respect to a plane. The axis placement A2 locates the plane of the symmetry : (Location, XDirection, YDirection).
Parameters:A2 (gp_Ax2) –
Return type:None
Mirrored()
Parameters:
  • P (gp_Pnt) –
  • A1 (gp_Ax1) –
  • A2 (gp_Ax2) –
Return type:

Handle_Geom_Geometry

Return type:

Handle_Geom_Geometry

Return type:

Handle_Geom_Geometry

Rotate()
  • Rotates a Geometry. A1 is the axis of the rotation. Ang is the angular value of the rotation in radians.
Parameters:
  • A1 (gp_Ax1) –
  • Ang (float) –
Return type:

None

Rotated()
Parameters:
  • A1 (gp_Ax1) –
  • Ang (float) –
Return type:

Handle_Geom_Geometry

Scale()
  • Scales a Geometry. S is the scaling value.
Parameters:
  • P (gp_Pnt) –
  • S (float) –
Return type:

None

Scaled()
Parameters:
  • P (gp_Pnt) –
  • S (float) –
Return type:

Handle_Geom_Geometry

Transform()
  • Transformation of a geometric object. This tansformation can be a translation, a rotation, a symmetry, a scaling or a complex transformation obtained by combination of the previous elementaries transformations. (see class Transformation of the package Geom).
Parameters:T (gp_Trsf) –
Return type:void
Transformed()
Parameters:T (gp_Trsf) –
Return type:Handle_Geom_Geometry
Translate()
  • Translates a Geometry. V is the vector of the tanslation.
Parameters:V (gp_Vec) –
Return type:None
  • Translates a Geometry from the point P1 to the point P2.
Parameters:
  • P1 (gp_Pnt) –
  • P2 (gp_Pnt) –
Return type:

None

Translated()
Parameters:
  • V (gp_Vec) –
  • P1 (gp_Pnt) –
  • P2 (gp_Pnt) –
Return type:

Handle_Geom_Geometry

Return type:

Handle_Geom_Geometry

thisown

The membership flag

class OCC.Geom.Geom_HSequenceOfBSplineSurface

Bases: OCC.MMgt.MMgt_TShared

Append()
Parameters:
  • anItem (Handle_Geom_BSplineSurface &) –
  • aSequence (Handle_Geom_HSequenceOfBSplineSurface &) –
Return type:

None

Return type:

None

ChangeSequence()
Return type:Geom_SequenceOfBSplineSurface
ChangeValue()
Parameters:anIndex (Standard_Integer) –
Return type:Handle_Geom_BSplineSurface
Clear()
Return type:None
Exchange()
Parameters:
  • anIndex (Standard_Integer) –
  • anOtherIndex (Standard_Integer) –
Return type:

None

GetHandle()

Geom_HSequenceOfBSplineSurface_GetHandle(Geom_HSequenceOfBSplineSurface self) -> Handle_Geom_HSequenceOfBSplineSurface

InsertAfter()
Parameters:
  • anIndex (Standard_Integer) –
  • anItem (Handle_Geom_BSplineSurface &) –
  • anIndex
  • aSequence (Handle_Geom_HSequenceOfBSplineSurface &) –
Return type:

None

Return type:

None

InsertBefore()
Parameters:
  • anIndex (Standard_Integer) –
  • anItem (Handle_Geom_BSplineSurface &) –
  • anIndex
  • aSequence (Handle_Geom_HSequenceOfBSplineSurface &) –
Return type:

None

Return type:

None

IsEmpty()
Return type:bool
Length()
Return type:int
Prepend()
Parameters:
  • anItem (Handle_Geom_BSplineSurface &) –
  • aSequence (Handle_Geom_HSequenceOfBSplineSurface &) –
Return type:

None

Return type:

None

Remove()
Parameters:
  • anIndex (Standard_Integer) –
  • fromIndex (Standard_Integer) –
  • toIndex (Standard_Integer) –
Return type:

None

Return type:

None

Reverse()
Return type:None
Sequence()
Return type:Geom_SequenceOfBSplineSurface
SetValue()
Parameters:
  • anIndex (Standard_Integer) –
  • anItem (Handle_Geom_BSplineSurface &) –
Return type:

None

ShallowCopy()
Return type:Handle_Geom_HSequenceOfBSplineSurface
Split()
Parameters:anIndex (Standard_Integer) –
Return type:Handle_Geom_HSequenceOfBSplineSurface
Value()
Parameters:anIndex (Standard_Integer) –
Return type:Handle_Geom_BSplineSurface
thisown

The membership flag

class OCC.Geom.Geom_HSequenceOfSurface

Bases: OCC.MMgt.MMgt_TShared

Append()
Parameters:
  • anItem (Handle_Geom_Surface &) –
  • aSequence (Handle_Geom_HSequenceOfSurface &) –
Return type:

None

Return type:

None

ChangeSequence()
Return type:Geom_SequenceOfSurface
ChangeValue()
Parameters:anIndex (Standard_Integer) –
Return type:Handle_Geom_Surface
Clear()
Return type:None
Exchange()
Parameters:
  • anIndex (Standard_Integer) –
  • anOtherIndex (Standard_Integer) –
Return type:

None

GetHandle()

Geom_HSequenceOfSurface_GetHandle(Geom_HSequenceOfSurface self) -> Handle_Geom_HSequenceOfSurface

InsertAfter()
Parameters:
  • anIndex (Standard_Integer) –
  • anItem (Handle_Geom_Surface &) –
  • anIndex
  • aSequence (Handle_Geom_HSequenceOfSurface &) –
Return type:

None

Return type:

None

InsertBefore()
Parameters:
  • anIndex (Standard_Integer) –
  • anItem (Handle_Geom_Surface &) –
  • anIndex
  • aSequence (Handle_Geom_HSequenceOfSurface &) –
Return type:

None

Return type:

None

IsEmpty()
Return type:bool
Length()
Return type:int
Prepend()
Parameters:
  • anItem (Handle_Geom_Surface &) –
  • aSequence (Handle_Geom_HSequenceOfSurface &) –
Return type:

None

Return type:

None

Remove()
Parameters:
  • anIndex (Standard_Integer) –
  • fromIndex (Standard_Integer) –
  • toIndex (Standard_Integer) –
Return type:

None

Return type:

None

Reverse()
Return type:None
Sequence()
Return type:Geom_SequenceOfSurface
SetValue()
Parameters:
  • anIndex (Standard_Integer) –
  • anItem (Handle_Geom_Surface &) –
Return type:

None

ShallowCopy()
Return type:Handle_Geom_HSequenceOfSurface
Split()
Parameters:anIndex (Standard_Integer) –
Return type:Handle_Geom_HSequenceOfSurface
Value()
Parameters:anIndex (Standard_Integer) –
Return type:Handle_Geom_Surface
thisown

The membership flag

class OCC.Geom.Geom_Hyperbola(*args)

Bases: OCC.Geom.Geom_Conic

Asymptote1()
  • In the local coordinate system of the hyperbola the equation of the hyperbola is (X*X)/(A*A) - (Y*Y)/(B*B) = 1.0 and the equation of the first asymptote is Y = (B/A)*X. Raises ConstructionError if MajorRadius = 0.0
Return type:gp_Ax1
Asymptote2()
  • In the local coordinate system of the hyperbola the equation of the hyperbola is (X*X)/(A*A) - (Y*Y)/(B*B) = 1.0 and the equation of the first asymptote is Y = -(B/A)*X. Raises ConstructionError if MajorRadius = 0.0
Return type:gp_Ax1
ConjugateBranch1()
  • This branch of hyperbola is on the positive side of the YAxis of <self>.
Return type:gp_Hypr
ConjugateBranch2()
  • This branch of hyperbola is on the negative side of the YAxis of <self>. Note: The diagram given under the class purpose indicates where these two branches of hyperbola are positioned in relation to this branch of hyperbola.
Return type:gp_Hypr
Directrix1()
  • This directrix is the line normal to the XAxis of the hyperbola in the local plane (Z = 0) at a distance d = MajorRadius / e from the center of the hyperbola, where e is the eccentricity of the hyperbola. This line is parallel to the YAxis. The intersection point between directrix1 and the XAxis is the location point of the directrix1. This point is on the positive side of the XAxis.
Return type:gp_Ax1
Directrix2()
  • This line is obtained by the symmetrical transformation of ‘directrix1’ with respect to the YAxis of the hyperbola.
Return type:gp_Ax1
Focal()
  • Computes the focal distance. It is the distance between the two focus of the hyperbola.
Return type:float
Focus1()
  • Returns the first focus of the hyperbola. This focus is on the positive side of the XAxis of the hyperbola.
Return type:gp_Pnt
Focus2()
  • Returns the second focus of the hyperbola. This focus is on the negative side of the XAxis of the hyperbola.
Return type:gp_Pnt
GetHandle()

Geom_Hyperbola_GetHandle(Geom_Hyperbola self) -> Handle_Geom_Hyperbola

Hypr()
  • returns the non transient parabola from gp with the same geometric properties as <self>.
Return type:gp_Hypr
MajorRadius()
  • Returns the major or minor radius of this hyperbola. The major radius is also the distance between the center of the hyperbola and the apex of the main branch (located on the ‘X Axis’ of the hyperbola).
Return type:float
MinorRadius()
  • Returns the major or minor radius of this hyperbola. The minor radius is also the distance between the center of the hyperbola and the apex of a conjugate branch (located on the ‘Y Axis’ of the hyperbola).
Return type:float
OtherBranch()
  • Computes the ‘other’ branch of this hyperbola. This is the symmetrical branch with respect to the center of this hyperbola. Note: The diagram given under the class purpose indicates where the ‘other’ branch is positioned in relation to this branch of the hyperbola.
Return type:gp_Hypr
Parameter()
  • Returns p = (e * e - 1) * MajorRadius where e is the eccentricity of the hyperbola. raised if MajorRadius = 0.0
Return type:float
SetHypr()
  • Converts the gp_Hypr hyperbola H into this hyperbola.
Parameters:H (gp_Hypr) –
Return type:None
SetMajorRadius()
  • Assigns a value to the major radius of this hyperbola. Exceptions Standard_ConstructionError if: - MajorRadius is less than 0.0, or - MinorRadius is less than 0.0.Raised if MajorRadius < 0.0
Parameters:MajorRadius (float) –
Return type:None
SetMinorRadius()
  • Assigns a value to the minor radius of this hyperbola. Exceptions Standard_ConstructionError if: - MajorRadius is less than 0.0, or - MinorRadius is less than 0.0.Raised if MajorRadius < 0.0
Parameters:MinorRadius (float) –
Return type:None
thisown

The membership flag

class OCC.Geom.Geom_Line(*args)

Bases: OCC.Geom.Geom_Curve

GetHandle()

Geom_Line_GetHandle(Geom_Line self) -> Handle_Geom_Line

Lin()
  • Returns non transient line from gp with the same geometric properties as <self>
Return type:gp_Lin
Position()
  • Returns the positioning axis of this line; this is also its local coordinate system.
Return type:gp_Ax1
SetDirection()
  • changes the direction of the line.
Parameters:V (gp_Dir) –
Return type:None
SetLin()
  • Set <self> so that <self> has the same geometric properties as L.
Parameters:L (gp_Lin) –
Return type:None
SetLocation()
  • changes the ‘Location’ point (origin) of the line.
Parameters:P (gp_Pnt) –
Return type:None
SetPosition()
  • changes the ‘Location’ and a the ‘Direction’ of <self>.
Parameters:A1 (gp_Ax1) –
Return type:None
thisown

The membership flag

class OCC.Geom.Geom_OffsetCurve(*args)

Bases: OCC.Geom.Geom_Curve

BasisCurve()
  • Returns the basis curve of this offset curve. Note: The basis curve can be an offset curve.
Return type:Handle_Geom_Curve
D0()
  • Warning! this should not be called if the basis curve is not at least C1. Nevertheless if used on portion where the curve is C1, it is OK
Parameters:
  • U (float) –
  • P (gp_Pnt) –
Return type:

None

  • Warning! this should not be called if the continuity of the basis curve is not C1. Nevertheless, it’s OK to use it on portion where the curve is C1
Parameters:
  • U (float) –
  • P (gp_Pnt) –
  • Pbasis (gp_Pnt) –
  • V1basis (gp_Vec) –
Return type:

None

D1()
  • Warning! this should not be called if the continuity of the basis curve is not C2. Nevertheless, it’s OK to use it on portion where the curve is C2
Parameters:
  • U (float) –
  • P (gp_Pnt) –
  • V1 (gp_Vec) –
Return type:

None

  • Warning! this should not be called if the continuity of the basis curve is not C1. Nevertheless, it’s OK to use it on portion where the curve is C1
Parameters:
  • U (float) –
  • P (gp_Pnt) –
  • Pbasis (gp_Pnt) –
  • V1 (gp_Vec) –
  • V1basis (gp_Vec) –
  • V2basis (gp_Vec) –
Return type:

None

D2()
  • Warning! this should not be called if the continuity of the basis curve is not C3. Nevertheless, it’s OK to use it on portion where the curve is C3
Parameters:
  • U (float) –
  • P (gp_Pnt) –
  • V1 (gp_Vec) –
  • V2 (gp_Vec) –
Return type:

None

  • Warning! this should not be called if the continuity of the basis curve is not C3. Nevertheless, it’s OK to use it on portion where the curve is C3
Parameters:
  • U (float) –
  • P (gp_Pnt) –
  • Pbasis (gp_Pnt) –
  • V1 (gp_Vec) –
  • V2 (gp_Vec) –
  • V1basis (gp_Vec) –
  • V2basis (gp_Vec) –
  • V3basis (gp_Vec) –
Return type:

None

Direction()
  • Returns the reference vector of this offset curve. Value and derivatives Warnings : The exception UndefinedValue or UndefinedDerivative is raised if it is not possible to compute a unique offset direction. If T is the first derivative with not null length and V the offset direction the relation ||T(U) ^ V|| != 0 must be satisfied to evaluate the offset curve. No check is done at the creation time and we suppose in this package that the offset curve is well defined.
Return type:gp_Dir
GetHandle()

Geom_OffsetCurve_GetHandle(Geom_OffsetCurve self) -> Handle_Geom_OffsetCurve

Offset()
  • Returns the offset value of this offset curve.
Return type:float
SetBasisCurve()
  • Changes this offset curve by assigning C as the basis curve from which it is built. Exceptions Standard_ConstructionError if the curve C is not at least ‘C1’ continuous.
Parameters:C (Handle_Geom_Curve &) –
Return type:None
SetDirection()
  • Changes this offset curve by assigning V as the reference vector used to compute the offset direction.
Parameters:V (gp_Dir) –
Return type:None
SetOffsetValue()
  • Changes this offset curve by assigning D as the offset value.
Parameters:D (float) –
Return type:None
Value()
  • Warning! this should not be called if the basis curve is not at least C1. Nevertheless if used on portion where the curve is C1, it is OK
Parameters:
  • U (float) –
  • P (gp_Pnt) –
  • Pbasis (gp_Pnt) –
  • V1basis (gp_Vec) –
Return type:

None

thisown

The membership flag

class OCC.Geom.Geom_OffsetSurface(*args)

Bases: OCC.Geom.Geom_Surface

BasisSurface()
  • Returns the basis surface of this offset surface. Note: The basis surface can be an offset surface.
Return type:Handle_Geom_Surface
D1()
  • Raised if the continuity of the basis surface is not C2.
Parameters:
  • U (float) –
  • V (float) –
  • P (gp_Pnt) –
  • D1U (gp_Vec) –
  • D1V (gp_Vec) –
Return type:

None

  • Raised if the continuity of the basis surface is not C2.
Parameters:
  • U (float) –
  • V (float) –
  • P (gp_Pnt) –
  • Pbasis (gp_Pnt) –
  • D1U (gp_Vec) –
  • D1V (gp_Vec) –
  • D1Ubasis (gp_Vec) –
  • D1Vbasis (gp_Vec) –
  • D2Ubasis (gp_Vec) –
  • D2Vbasis (gp_Vec) –
  • D2UVbasis (gp_Vec) –
Return type:

None

D2()
  • //!—Purpose ; Raised if the continuity of the basis surface is not C3.
Parameters:
  • U (float) –
  • V (float) –
  • P (gp_Pnt) –
  • D1U (gp_Vec) –
  • D1V (gp_Vec) –
  • D2U (gp_Vec) –
  • D2V (gp_Vec) –
  • D2UV (gp_Vec) –
Return type:

None

  • Raised if the continuity of the basis surface is not C3. The following private methods includes common part of local and global methods of derivative evaluations.
Parameters:
  • U (float) –
  • V (float) –
  • P (gp_Pnt) –
  • Pbasis (gp_Pnt) –
  • D1U (gp_Vec) –
  • D1V (gp_Vec) –
  • D2U (gp_Vec) –
  • D2V (gp_Vec) –
  • D2UV (gp_Vec) –
  • D1Ubasis (gp_Vec) –
  • D1Vbasis (gp_Vec) –
  • D2Ubasis (gp_Vec) –
  • D2Vbasis (gp_Vec) –
  • D2UVbasis (gp_Vec) –
  • D3Ubasis (gp_Vec) –
  • D3Vbasis (gp_Vec) –
  • D3UUVbasis (gp_Vec) –
  • D3UVVbasis (gp_Vec) –
Return type:

None

GetHandle()

Geom_OffsetSurface_GetHandle(Geom_OffsetSurface self) -> Handle_Geom_OffsetSurface

LocalD0()
Parameters:
  • U (float) –
  • V (float) –
  • USide (Standard_Integer) –
  • VSide (Standard_Integer) –
  • P (gp_Pnt) –
Return type:

None

LocalD1()
Parameters:
  • U (float) –
  • V (float) –
  • USide (Standard_Integer) –
  • VSide (Standard_Integer) –
  • P (gp_Pnt) –
  • D1U (gp_Vec) –
  • D1V (gp_Vec) –
Return type:

None

LocalD2()
Parameters:
  • U (float) –
  • V (float) –
  • USide (Standard_Integer) –
  • VSide (Standard_Integer) –
  • P (gp_Pnt) –
  • D1U (gp_Vec) –
  • D1V (gp_Vec) –
  • D2U (gp_Vec) –
  • D2V (gp_Vec) –
  • D2UV (gp_Vec) –
Return type:

None

LocalD3()
Parameters:
  • U (float) –
  • V (float) –
  • USide (Standard_Integer) –
  • VSide (Standard_Integer) –
  • P (gp_Pnt) –
  • D1U (gp_Vec) –
  • D1V (gp_Vec) –
  • D2U (gp_Vec) –
  • D2V (gp_Vec) –
  • D2UV (gp_Vec) –
  • D3U (gp_Vec) –
  • D3V (gp_Vec) –
  • D3UUV (gp_Vec) –
  • D3UVV (gp_Vec) –
Return type:

None

LocalDN()
Parameters:
  • U (float) –
  • V (float) –
  • USide (Standard_Integer) –
  • VSide (Standard_Integer) –
  • Nu (Standard_Integer) –
  • Nv (Standard_Integer) –
Return type:

gp_Vec

Offset()
  • Returns the offset value of this offset surface.
Return type:float
SetBasisSurface()
  • Raised if S is not at least C1. Warnings : No check is done to verify that a unique normal direction is defined at any point of the basis surface S. Exceptions Standard_ConstructionError if the surface S is not at least ‘C1’ continuous.
Parameters:S (Handle_Geom_Surface &) –
Return type:None
SetOffsetValue()
  • Changes this offset surface by assigning D as the offset value.
Parameters:D (float) –
Return type:None
Surface()
  • returns an equivalent surface of the offset surface when the basis surface is a canonic surface or a rectangular limited surface on canonic surface or if the offset is null.
Return type:Handle_Geom_Surface
UOsculatingSurface()
  • if Standard_True, L is the local osculating surface along U at the point U,V. It means that DL/DU is collinear to DS/DU . If IsOpposite == Standard_True these vectors have opposite direction.
Parameters:
  • U (float) –
  • V (float) –
  • IsOpposite (bool) –
  • UOsculSurf (Handle_Geom_BSplineSurface &) –
Return type:

bool

VOsculatingSurface()
  • if Standard_True, L is the local osculating surface along V at the point U,V. It means that DL/DV is collinear to DS/DV . If IsOpposite == Standard_True these vectors have opposite direction.
Parameters:
  • U (float) –
  • V (float) –
  • IsOpposite (bool) –
  • VOsculSurf (Handle_Geom_BSplineSurface &) –
Return type:

bool

Value()
  • P (U, V) = Pbasis + Offset * Ndir where Ndir = D1Ubasis ^ D1Vbasis / ||D1Ubasis ^ D1Vbasis|| is the normal direction of the surface. If Ndir is undefined this method computes an approched normal direction using the following limited development : Ndir = N0 + DNdir/DU + DNdir/DV + Eps with Eps->0 which requires to compute the second derivatives on the basis surface. If the normal direction cannot be approximate for this order of derivation the exception UndefinedValue is raised. Raised if the continuity of the basis surface is not C1. Raised if the order of derivation required to compute the normal direction is greater than the second order.
Parameters:
  • U (float) –
  • V (float) –
  • P (gp_Pnt) –
  • Pbasis (gp_Pnt) –
  • D1Ubasis (gp_Vec) –
  • D1Vbasis (gp_Vec) –
Return type:

None

thisown

The membership flag

class OCC.Geom.Geom_OsculatingSurface(*args)

Bases: object

BasisSurface()
Return type:Handle_Geom_Surface
Init()
Parameters:
  • BS (Handle_Geom_Surface &) –
  • Tol (float) –
Return type:

None

Tolerance()
Return type:float
UOscSurf()
  • if Standard_True, L is the local osculating surface along U at the point U,V.
Parameters:
  • U (float) –
  • V (float) –
  • t (bool) –
  • L (Handle_Geom_BSplineSurface &) –
Return type:

bool

VOscSurf()
  • if Standard_True, L is the local osculating surface along V at the point U,V.
Parameters:
  • U (float) –
  • V (float) –
  • t (bool) –
  • L (Handle_Geom_BSplineSurface &) –
Return type:

bool

thisown

The membership flag

class OCC.Geom.Geom_Parabola(*args)

Bases: OCC.Geom.Geom_Conic

Directrix()
  • Computes the directrix of this parabola. This is a line normal to the axis of symmetry, in the plane of this parabola, located on the negative side of its axis of symmetry, at a distance from the apex equal to the focal length. The directrix is returned as an axis (gp_Ax1 object), where the origin is located on the ‘X Axis’ of this parabola.
Return type:gp_Ax1
Focal()
  • Computes the focal distance of this parabola The focal distance is the distance between the apex and the focus of the parabola.
Return type:float
Focus()
  • Computes the focus of this parabola. The focus is on the positive side of the ‘X Axis’ of the local coordinate system of the parabola.
Return type:gp_Pnt
GetHandle()

Geom_Parabola_GetHandle(Geom_Parabola self) -> Handle_Geom_Parabola

Parab()
  • Returns the non transient parabola from gp with the same geometric properties as <self>.
Return type:gp_Parab
Parameter()
  • Computes the parameter of this parabola which is the distance between its focus and its directrix. This distance is twice the focal length. If P is the parameter of the parabola, the equation of the parabola in its local coordinate system is: Y**2 = 2.*P*X.
Return type:float
SetFocal()
  • Assigns the value Focal to the focal distance of this parabola. Exceptions Standard_ConstructionError if Focal is negative.
Parameters:Focal (float) –
Return type:None
SetParab()
  • Converts the gp_Parab parabola Prb into this parabola.
Parameters:Prb (gp_Parab) –
Return type:None
thisown

The membership flag

class OCC.Geom.Geom_Plane(*args)

Bases: OCC.Geom.Geom_ElementarySurface

Coefficients()
  • Computes the normalized coefficients of the plane’s cartesian equation : Ax + By + Cz + D = 0.0
Parameters:
  • A (float &) –
  • B (float &) –
  • C (float &) –
  • D (float &) –
Return type:

None

GetHandle()

Geom_Plane_GetHandle(Geom_Plane self) -> Handle_Geom_Plane

Pln()
  • Converts this plane into a gp_Pln plane.
Return type:gp_Pln
SetPln()
  • Set <self> so that <self> has the same geometric properties as Pl.
Parameters:Pl (gp_Pln) –
Return type:None
thisown

The membership flag

class OCC.Geom.Geom_Point(*args, **kwargs)

Bases: OCC.Geom.Geom_Geometry

Coord()
  • returns the Coordinates of <self>.
Parameters:
  • X (float &) –
  • Y (float &) –
  • Z (float &) –
Return type:

void

Distance()
  • Computes the distance between <self> and <Other>.
Parameters:Other (Handle_Geom_Point &) –
Return type:float
GetHandle()

Geom_Point_GetHandle(Geom_Point self) -> Handle_Geom_Point

Pnt()
  • returns a non transient copy of <self>
Return type:gp_Pnt
SquareDistance()
  • Computes the square distance between <self> and <Other>.
Parameters:Other (Handle_Geom_Point &) –
Return type:float
X()
  • returns the X coordinate of <self>.
Return type:float
Y()
  • returns the Y coordinate of <self>.
Return type:float
Z()
  • returns the Z coordinate of <self>.
Return type:float
thisown

The membership flag

class OCC.Geom.Geom_RectangularTrimmedSurface(*args)

Bases: OCC.Geom.Geom_BoundedSurface

BasisSurface()
  • Returns the Basis surface of <self>.
Return type:Handle_Geom_Surface
GetHandle()

Geom_RectangularTrimmedSurface_GetHandle(Geom_RectangularTrimmedSurface self) -> Handle_Geom_RectangularTrimmedSurface

SetTrim()
  • Modifies this patch by changing the trim values applied to the original surface The u parametric direction of this patch is oriented from U1 to U2. The v parametric direction of this patch is oriented from V1 to V2. USense and VSense are used for the construction only if the surface is periodic in the corresponding parametric direction, and define the available part of the surface; by default in this case, this patch has the same orientation as the basis surface. Raised if The BasisSurface is not periodic in the UDirection and U1 or U2 are out of the bounds of the BasisSurface. The BasisSurface is not periodic in the VDirection and V1 or V2 are out of the bounds of the BasisSurface. U1 = U2 or V1 = V2
Parameters:
  • U1 (float) –
  • U2 (float) –
  • V1 (float) –
  • V2 (float) –
  • USense (bool) – default value is Standard_True
  • VSense (bool) – default value is Standard_True
Return type:

None

  • Modifies this patch by changing the trim values applied to the original surface The u parametric direction of this patch is oriented from U1 to U2. The v parametric direction of this patch is oriented from V1 to V2. USense and VSense are used for the construction only if the surface is periodic in the corresponding parametric direction, and define the available part of the surface; by default in this case, this patch has the same orientation as the basis surface. Raised if The BasisSurface is not periodic in the UDirection and U1 or U2 are out of the bounds of the BasisSurface. The BasisSurface is not periodic in the VDirection and V1 or V2 are out of the bounds of the BasisSurface. U1 = U2 or V1 = V2
Parameters:
  • U1 (float) –
  • U2 (float) –
  • V1 (float) –
  • V2 (float) –
  • USense (bool) – default value is Standard_True
  • VSense (bool) – default value is Standard_True
Return type:

None

  • Modifies this patch by changing the trim values applied to the original surface The u parametric direction of this patch is oriented from U1 to U2. The v parametric direction of this patch is oriented from V1 to V2. USense and VSense are used for the construction only if the surface is periodic in the corresponding parametric direction, and define the available part of the surface; by default in this case, this patch has the same orientation as the basis surface. Raised if The BasisSurface is not periodic in the UDirection and U1 or U2 are out of the bounds of the BasisSurface. The BasisSurface is not periodic in the VDirection and V1 or V2 are out of the bounds of the BasisSurface. U1 = U2 or V1 = V2
Parameters:
  • U1 (float) –
  • U2 (float) –
  • V1 (float) –
  • V2 (float) –
  • USense (bool) – default value is Standard_True
  • VSense (bool) – default value is Standard_True
Return type:

None

  • Modifies this patch by changing the trim values applied to the original surface The basis surface is trimmed only in one parametric direction: if UTrim is true, the surface is trimmed in the u parametric direction; if it is false, it is trimmed in the v parametric direction. In the ‘trimmed’ direction, this patch is oriented from Param1 to Param2. If the basis surface is periodic in the ‘trimmed’ direction, Sense defines its available part. By default in this case, this patch has the same orientation as the basis surface in this parametric direction. If the basis surface is closed or periodic in the other parametric direction (i.e. not the ‘trimmed’ direction), this patch has the same characteristics as the basis surface in that parametric direction. Raised if The BasisSurface is not periodic in the considered direction and Param1 or Param2 are out of the bounds of the BasisSurface. Param1 = Param2
Parameters:
  • Param1 (float) –
  • Param2 (float) –
  • UTrim (bool) –
  • Sense (bool) – default value is Standard_True
Return type:

None

  • Modifies this patch by changing the trim values applied to the original surface The basis surface is trimmed only in one parametric direction: if UTrim is true, the surface is trimmed in the u parametric direction; if it is false, it is trimmed in the v parametric direction. In the ‘trimmed’ direction, this patch is oriented from Param1 to Param2. If the basis surface is periodic in the ‘trimmed’ direction, Sense defines its available part. By default in this case, this patch has the same orientation as the basis surface in this parametric direction. If the basis surface is closed or periodic in the other parametric direction (i.e. not the ‘trimmed’ direction), this patch has the same characteristics as the basis surface in that parametric direction. Raised if The BasisSurface is not periodic in the considered direction and Param1 or Param2 are out of the bounds of the BasisSurface. Param1 = Param2
Parameters:
  • Param1 (float) –
  • Param2 (float) –
  • UTrim (bool) –
  • Sense (bool) – default value is Standard_True
Return type:

None

thisown

The membership flag

class OCC.Geom.Geom_SequenceNodeOfSequenceOfBSplineSurface(*args)

Bases: OCC.TCollection.TCollection_SeqNode

GetHandle()

Geom_SequenceNodeOfSequenceOfBSplineSurface_GetHandle(Geom_SequenceNodeOfSequenceOfBSplineSurface self) -> Handle_Geom_SequenceNodeOfSequenceOfBSplineSurface

Value()
Return type:Handle_Geom_BSplineSurface
thisown

The membership flag

class OCC.Geom.Geom_SequenceNodeOfSequenceOfSurface(*args)

Bases: OCC.TCollection.TCollection_SeqNode

GetHandle()

Geom_SequenceNodeOfSequenceOfSurface_GetHandle(Geom_SequenceNodeOfSequenceOfSurface self) -> Handle_Geom_SequenceNodeOfSequenceOfSurface

Value()
Return type:Handle_Geom_Surface
thisown

The membership flag

class OCC.Geom.Geom_SequenceOfBSplineSurface

Bases: OCC.TCollection.TCollection_BaseSequence

Append()
Parameters:
  • T (Handle_Geom_BSplineSurface &) –
  • S (Geom_SequenceOfBSplineSurface &) –
Return type:

None

Return type:

None

Assign()
Parameters:Other (Geom_SequenceOfBSplineSurface &) –
Return type:Geom_SequenceOfBSplineSurface
ChangeValue()
Parameters:Index (Standard_Integer) –
Return type:Handle_Geom_BSplineSurface
Clear()
Return type:None
First()
Return type:Handle_Geom_BSplineSurface
InsertAfter()
Parameters:
  • Index (Standard_Integer) –
  • T (Handle_Geom_BSplineSurface &) –
  • Index
  • S (Geom_SequenceOfBSplineSurface &) –
Return type:

None

Return type:

None

InsertBefore()
Parameters:
  • Index (Standard_Integer) –
  • T (Handle_Geom_BSplineSurface &) –
  • Index
  • S (Geom_SequenceOfBSplineSurface &) –
Return type:

None

Return type:

None

Last()
Return type:Handle_Geom_BSplineSurface
Prepend()
Parameters:
  • T (Handle_Geom_BSplineSurface &) –
  • S (Geom_SequenceOfBSplineSurface &) –
Return type:

None

Return type:

None

Remove()
Parameters:
  • Index (Standard_Integer) –
  • FromIndex (Standard_Integer) –
  • ToIndex (Standard_Integer) –
Return type:

None

Return type:

None

Set()
Parameters:Other (Geom_SequenceOfBSplineSurface &) –
Return type:Geom_SequenceOfBSplineSurface
SetValue()
Parameters:
  • Index (Standard_Integer) –
  • I (Handle_Geom_BSplineSurface &) –
Return type:

None

Split()
Parameters:
  • Index (Standard_Integer) –
  • Sub (Geom_SequenceOfBSplineSurface &) –
Return type:

None

Value()
Parameters:Index (Standard_Integer) –
Return type:Handle_Geom_BSplineSurface
thisown

The membership flag

class OCC.Geom.Geom_SequenceOfSurface

Bases: OCC.TCollection.TCollection_BaseSequence

Append()
Parameters:
  • T (Handle_Geom_Surface &) –
  • S (Geom_SequenceOfSurface &) –
Return type:

None

Return type:

None

Assign()
Parameters:Other (Geom_SequenceOfSurface &) –
Return type:Geom_SequenceOfSurface
ChangeValue()
Parameters:Index (Standard_Integer) –
Return type:Handle_Geom_Surface
Clear()
Return type:None
First()
Return type:Handle_Geom_Surface
InsertAfter()
Parameters:
  • Index (Standard_Integer) –
  • T (Handle_Geom_Surface &) –
  • Index
  • S (Geom_SequenceOfSurface &) –
Return type:

None

Return type:

None

InsertBefore()
Parameters:
  • Index (Standard_Integer) –
  • T (Handle_Geom_Surface &) –
  • Index
  • S (Geom_SequenceOfSurface &) –
Return type:

None

Return type:

None

Last()
Return type:Handle_Geom_Surface
Prepend()
Parameters:
  • T (Handle_Geom_Surface &) –
  • S (Geom_SequenceOfSurface &) –
Return type:

None

Return type:

None

Remove()
Parameters:
  • Index (Standard_Integer) –
  • FromIndex (Standard_Integer) –
  • ToIndex (Standard_Integer) –
Return type:

None

Return type:

None

Set()
Parameters:Other (Geom_SequenceOfSurface &) –
Return type:Geom_SequenceOfSurface
SetValue()
Parameters:
  • Index (Standard_Integer) –
  • I (Handle_Geom_Surface &) –
Return type:

None

Split()
Parameters:
  • Index (Standard_Integer) –
  • Sub (Geom_SequenceOfSurface &) –
Return type:

None

Value()
Parameters:Index (Standard_Integer) –
Return type:Handle_Geom_Surface
thisown

The membership flag

class OCC.Geom.Geom_SphericalSurface(*args)

Bases: OCC.Geom.Geom_ElementarySurface

Area()
  • Computes the aera of the spherical surface.
Return type:float
Coefficients()
  • Returns the coefficients of the implicit equation of the quadric in the absolute cartesian coordinates system : These coefficients are normalized. A1.X**2 + A2.Y**2 + A3.Z**2 + 2.(B1.X.Y + B2.X.Z + B3.Y.Z) + 2.(C1.X + C2.Y + C3.Z) + D = 0.0
Parameters:
  • A1 (float &) –
  • A2 (float &) –
  • A3 (float &) –
  • B1 (float &) –
  • B2 (float &) –
  • B3 (float &) –
  • C1 (float &) –
  • C2 (float &) –
  • C3 (float &) –
  • D (float &) –
Return type:

None

GetHandle()

Geom_SphericalSurface_GetHandle(Geom_SphericalSurface self) -> Handle_Geom_SphericalSurface

Radius()
  • Computes the coefficients of the implicit equation of this quadric in the absolute Cartesian coordinate system: A1.X**2 + A2.Y**2 + A3.Z**2 + 2.(B1.X.Y + B2.X.Z + B3.Y.Z) + 2.(C1.X + C2.Y + C3.Z) + D = 0.0 An implicit normalization is applied (i.e. A1 = A2 = 1. in the local coordinate system of this sphere).
Return type:float
SetRadius()
  • Assigns the value R to the radius of this sphere. Exceptions Standard_ConstructionError if R is less than 0.0.
Parameters:R (float) –
Return type:None
SetSphere()
  • Converts the gp_Sphere S into this sphere.
Parameters:S (gp_Sphere) –
Return type:None
Sphere()
  • Returns a non persistent sphere with the same geometric properties as <self>.
Return type:gp_Sphere
Volume()
  • Computes the volume of the spherical surface.
Return type:float
thisown

The membership flag

class OCC.Geom.Geom_Surface(*args, **kwargs)

Bases: OCC.Geom.Geom_Geometry

Bounds()
  • Returns the parametric bounds U1, U2, V1 and V2 of this surface. If the surface is infinite, this function can return a value equal to Precision::Infinite: instead of Standard_Real::LastReal.
Parameters:
  • U1 (float &) –
  • U2 (float &) –
  • V1 (float &) –
  • V2 (float &) –
Return type:

void

Continuity()
  • Returns the Global Continuity of the surface in direction U and V : C0 : only geometric continuity, C1 : continuity of the first derivative all along the surface, C2 : continuity of the second derivative all along the surface, C3 : continuity of the third derivative all along the surface, G1 : tangency continuity all along the surface, G2 : curvature continuity all along the surface, CN : the order of continuity is infinite. Example : If the surface is C1 in the V parametric direction and C2 in the U parametric direction Shape = C1.
Return type:GeomAbs_Shape
D0()
  • Computes the point of parameter U,V on the surface. Raised only for an ‘OffsetSurface’ if it is not possible to compute the current point.
Parameters:
  • U (float) –
  • V (float) –
  • P (gp_Pnt) –
Return type:

void

D1()
  • Computes the point P and the first derivatives in the directions U and V at this point. Raised if the continuity of the surface is not C1.
Parameters:
  • U (float) –
  • V (float) –
  • P (gp_Pnt) –
  • D1U (gp_Vec) –
  • D1V (gp_Vec) –
Return type:

void

D2()
  • Computes the point P, the first and the second derivatives in the directions U and V at this point. Raised if the continuity of the surface is not C2.
Parameters:
  • U (float) –
  • V (float) –
  • P (gp_Pnt) –
  • D1U (gp_Vec) –
  • D1V (gp_Vec) –
  • D2U (gp_Vec) –
  • D2V (gp_Vec) –
  • D2UV (gp_Vec) –
Return type:

void

D3()
  • Computes the point P, the first,the second and the third derivatives in the directions U and V at this point. Raised if the continuity of the surface is not C2.
Parameters:
  • U (float) –
  • V (float) –
  • P (gp_Pnt) –
  • D1U (gp_Vec) –
  • D1V (gp_Vec) –
  • D2U (gp_Vec) –
  • D2V (gp_Vec) –
  • D2UV (gp_Vec) –
  • D3U (gp_Vec) –
  • D3V (gp_Vec) –
  • D3UUV (gp_Vec) –
  • D3UVV (gp_Vec) –
Return type:

void

DN()
  • //!—Purpose ; Computes the derivative of order Nu in the direction U and Nv in the direction V at the point P(U, V). Raised if the continuity of the surface is not CNu in the U direction or not CNv in the V direction. Raised if Nu + Nv < 1 or Nu < 0 or Nv < 0.
Parameters:
  • U (float) –
  • V (float) –
  • Nu (Standard_Integer) –
  • Nv (Standard_Integer) –
Return type:

gp_Vec

GetHandle()

Geom_Surface_GetHandle(Geom_Surface self) -> Handle_Geom_Surface

IsCNu()
  • Returns the order of continuity of the surface in the U parametric direction. Raised if N < 0.
Parameters:N (Standard_Integer) –
Return type:bool
IsCNv()
  • Returns the order of continuity of the surface in the V parametric direction. Raised if N < 0.
Parameters:N (Standard_Integer) –
Return type:bool
IsUClosed()
  • Checks whether this surface is closed in the u parametric direction. Returns true if, in the u parametric direction: taking uFirst and uLast as the parametric bounds in the u parametric direction, for each parameter v, the distance between the points P(uFirst, v) and P(uLast, v) is less than or equal to gp::Resolution().
Return type:bool
IsUPeriodic()
  • Checks if this surface is periodic in the u parametric direction. Returns true if: - this surface is closed in the u parametric direction, and - there is a constant T such that the distance between the points P (u, v) and P (u + T, v) (or the points P (u, v) and P (u, v + T)) is less than or equal to gp::Resolution(). Note: T is the parametric period in the u parametric direction.
Return type:bool
IsVClosed()
  • Checks whether this surface is closed in the u parametric direction. Returns true if, in the v parametric direction: taking vFirst and vLast as the parametric bounds in the v parametric direction, for each parameter u, the distance between the points P(u, vFirst) and P(u, vLast) is less than or equal to gp::Resolution().
Return type:bool
IsVPeriodic()
  • Checks if this surface is periodic in the v parametric direction. Returns true if: - this surface is closed in the v parametric direction, and - there is a constant T such that the distance between the points P (u, v) and P (u + T, v) (or the points P (u, v) and P (u, v + T)) is less than or equal to gp::Resolution(). Note: T is the parametric period in the v parametric direction.
Return type:bool
ParametricTransformation()
  • Returns a 2d transformation used to find the new parameters of a point on the transformed surface. me->Transformed(T)->Value(U’,V’) is the same point as me->Value(U,V).Transformed(T) Where U’,V’ are obtained by transforming U,V with th 2d transformation returned by me->ParametricTransformation(T) This methods returns an identity transformation It can be redefined. For example on the Plane, Cylinder, Cone, Revolved and Extruded surfaces.
Parameters:T (gp_Trsf) –
Return type:gp_GTrsf2d
TransformParameters()
  • Computes the parameters on the transformed surface for the transform of the point of parameters U,V on <self>. me->Transformed(T)->Value(U’,V’) is the same point as me->Value(U,V).Transformed(T) Where U’,V’ are the new values of U,V after calling me->TranformParameters(U,V,T) This methods does not change <U> and <V> It can be redefined. For example on the Plane, Cylinder, Cone, Revolved and Extruded surfaces.
Parameters:
  • U (float &) –
  • V (float &) –
  • T (gp_Trsf) –
Return type:

void

UIso()
  • Computes the U isoparametric curve.
Parameters:U (float) –
Return type:Handle_Geom_Curve
UPeriod()
  • Returns the period of this surface in the u parametric direction. raises if the surface is not uperiodic.
Return type:float
UReverse()
  • Reverses the U direction of parametrization of <self>. The bounds of the surface are not modified.
Return type:void
UReversed()
  • Reverses the U direction of parametrization of <self>. The bounds of the surface are not modified. A copy of <self> is returned.
Return type:Handle_Geom_Surface
UReversedParameter()
  • Returns the parameter on the Ureversed surface for the point of parameter U on <self>. me->UReversed()->Value(me->UReversedParameter(U),V) is the same point as me->Value(U,V)
Parameters:U (float) –
Return type:float
VIso()
  • Computes the V isoparametric curve.
Parameters:V (float) –
Return type:Handle_Geom_Curve
VPeriod()
  • Returns the period of this surface in the v parametric direction. raises if the surface is not vperiodic.
Return type:float
VReverse()
  • Reverses the V direction of parametrization of <self>. The bounds of the surface are not modified.
Return type:void
VReversed()
  • Reverses the V direction of parametrization of <self>. The bounds of the surface are not modified. A copy of <self> is returned.
Return type:Handle_Geom_Surface
VReversedParameter()
  • Returns the parameter on the Vreversed surface for the point of parameter V on <self>. me->VReversed()->Value(U,me->VReversedParameter(V)) is the same point as me->Value(U,V)
Parameters:V (float) –
Return type:float
Value()
  • Computes the point of parameter U on the surface. It is implemented with D0 Raised only for an ‘OffsetSurface’ if it is not possible to compute the current point.
Parameters:
  • U (float) –
  • V (float) –
Return type:

gp_Pnt

thisown

The membership flag

class OCC.Geom.Geom_SurfaceOfLinearExtrusion(*args)

Bases: OCC.Geom.Geom_SweptSurface

GetHandle()

Geom_SurfaceOfLinearExtrusion_GetHandle(Geom_SurfaceOfLinearExtrusion self) -> Handle_Geom_SurfaceOfLinearExtrusion

LocalD0()
  • The following functions evaluates the local derivatives on surface. Useful to manage discontinuities on the surface. if Side = 1 -> P = S( U+,V ) if Side = -1 -> P = S( U-,V ) else P is betveen discontinuities can be evaluated using methods of global evaluations P = S( U ,V )
Parameters:
  • U (float) –
  • V (float) –
  • USide (Standard_Integer) –
  • P (gp_Pnt) –
Return type:

None

LocalD1()
Parameters:
  • U (float) –
  • V (float) –
  • USide (Standard_Integer) –
  • P (gp_Pnt) –
  • D1U (gp_Vec) –
  • D1V (gp_Vec) –
Return type:

None

LocalD2()
Parameters:
  • U (float) –
  • V (float) –
  • USide (Standard_Integer) –
  • P (gp_Pnt) –
  • D1U (gp_Vec) –
  • D1V (gp_Vec) –
  • D2U (gp_Vec) –
  • D2V (gp_Vec) –
  • D2UV (gp_Vec) –
Return type:

None

LocalD3()
Parameters:
  • U (float) –
  • V (float) –
  • USide (Standard_Integer) –
  • P (gp_Pnt) –
  • D1U (gp_Vec) –
  • D1V (gp_Vec) –
  • D2U (gp_Vec) –
  • D2V (gp_Vec) –
  • D2UV (gp_Vec) –
  • D3U (gp_Vec) –
  • D3V (gp_Vec) –
  • D3UUV (gp_Vec) –
  • D3UVV (gp_Vec) –
Return type:

None

LocalDN()
Parameters:
  • U (float) –
  • V (float) –
  • USide (Standard_Integer) –
  • Nu (Standard_Integer) –
  • Nv (Standard_Integer) –
Return type:

gp_Vec

SetBasisCurve()
  • Modifies this surface of linear extrusion by redefining its ‘basis curve’ (the ‘extruded curve’).
Parameters:C (Handle_Geom_Curve &) –
Return type:None
SetDirection()
  • Assigns V as the ‘direction of extrusion’ for this surface of linear extrusion.
Parameters:V (gp_Dir) –
Return type:None
thisown

The membership flag

class OCC.Geom.Geom_SurfaceOfRevolution(*args)

Bases: OCC.Geom.Geom_SweptSurface

Axis()
  • Returns the revolution axis of the surface.
Return type:gp_Ax1
GetHandle()

Geom_SurfaceOfRevolution_GetHandle(Geom_SurfaceOfRevolution self) -> Handle_Geom_SurfaceOfRevolution

LocalD0()
Parameters:
  • U (float) –
  • V (float) –
  • USide (Standard_Integer) –
  • P (gp_Pnt) –
Return type:

None

LocalD1()
Parameters:
  • U (float) –
  • V (float) –
  • USide (Standard_Integer) –
  • P (gp_Pnt) –
  • D1U (gp_Vec) –
  • D1V (gp_Vec) –
Return type:

None

LocalD2()
Parameters:
  • U (float) –
  • V (float) –
  • USide (Standard_Integer) –
  • P (gp_Pnt) –
  • D1U (gp_Vec) –
  • D1V (gp_Vec) –
  • D2U (gp_Vec) –
  • D2V (gp_Vec) –
  • D2UV (gp_Vec) –
Return type:

None

LocalD3()
Parameters:
  • U (float) –
  • V (float) –
  • USide (Standard_Integer) –
  • P (gp_Pnt) –
  • D1U (gp_Vec) –
  • D1V (gp_Vec) –
  • D2U (gp_Vec) –
  • D2V (gp_Vec) –
  • D2UV (gp_Vec) –
  • D3U (gp_Vec) –
  • D3V (gp_Vec) –
  • D3UUV (gp_Vec) –
  • D3UVV (gp_Vec) –
Return type:

None

LocalDN()
Parameters:
  • U (float) –
  • V (float) –
  • USide (Standard_Integer) –
  • Nu (Standard_Integer) –
  • Nv (Standard_Integer) –
Return type:

gp_Vec

Location()
  • Returns the location point of the axis of revolution.
Return type:gp_Pnt
ReferencePlane()
  • Computes the position of the reference plane of the surface defined by the basis curve and the symmetry axis. The location point is the location point of the revolution’s axis, the XDirection of the plane is given by the revolution’s axis and the orientation of the normal to the plane is given by the sense of revolution. Raised if the revolved curve is not planar or if the revolved curve and the symmetry axis are not in the same plane or if the maximum of distance between the axis and the revolved curve is lower or equal to Resolution from gp.
Return type:gp_Ax2
SetAxis()
  • Changes the axis of revolution. Warnings : It is not checked that the axis is in the plane of the revolved curve.
Parameters:A1 (gp_Ax1) –
Return type:None
SetBasisCurve()
  • Changes the revolved curve of the surface. Warnings : It is not checked that the curve C is planar and that the surface axis is in the plane of the curve. It is not checked that the revolved curve C doesn’t self-intersects.
Parameters:C (Handle_Geom_Curve &) –
Return type:None
SetDirection()
  • Changes the direction of the revolution axis. Warnings : It is not checked that the axis is in the plane of the revolved curve.
Parameters:V (gp_Dir) –
Return type:None
SetLocation()
  • Changes the location point of the revolution axis. Warnings : It is not checked that the axis is in the plane of the revolved curve.
Parameters:P (gp_Pnt) –
Return type:None
thisown

The membership flag

class OCC.Geom.Geom_SweptSurface(*args, **kwargs)

Bases: OCC.Geom.Geom_Surface

BasisCurve()
  • Returns the referenced curve of the surface. For a surface of revolution it is the revolution curve, for a surface of linear extrusion it is the extruded curve.
Return type:Handle_Geom_Curve
Direction()
  • Returns the reference direction of the swept surface. For a surface of revolution it is the direction of the revolution axis, for a surface of linear extrusion it is the direction of extrusion.
Return type:gp_Dir
GetHandle()

Geom_SweptSurface_GetHandle(Geom_SweptSurface self) -> Handle_Geom_SweptSurface

thisown

The membership flag

class OCC.Geom.Geom_ToroidalSurface(*args)

Bases: OCC.Geom.Geom_ElementarySurface

Area()
  • Computes the aera of the surface.
Return type:float
Coefficients()
  • Returns the coefficients of the implicit equation of the surface in the absolute cartesian coordinate system : Coef(1) * X**4 + Coef(2) * Y**4 + Coef(3) * Z**4 + Coef(4) * X**3 * Y + Coef(5) * X**3 * Z + Coef(6) * Y**3 * X + Coef(7) * Y**3 * Z + Coef(8) * Z**3 * X + Coef(9) * Z**3 * Y + Coef(10) * X**2 * Y**2 + Coef(11) * X**2 * Z**2 + Coef(12) * Y**2 * Z**2 + Coef(13) * X**3 + Coef(14) * Y**3 + Coef(15) * Z**3 + Coef(16) * X**2 * Y + Coef(17) * X**2 * Z + Coef(18) * Y**2 * X + Coef(19) * Y**2 * Z + Coef(20) * Z**2 * X + Coef(21) * Z**2 * Y + Coef(22) * X**2 + Coef(23) * Y**2 + Coef(24) * Z**2 + Coef(25) * X * Y + Coef(26) * X * Z + Coef(27) * Y * Z + Coef(28) * X + Coef(29) * Y + Coef(30) * Z + Coef(31) = 0.0 Raised if the length of Coef is lower than 31.
Parameters:Coef (TColStd_Array1OfReal &) –
Return type:None
GetHandle()

Geom_ToroidalSurface_GetHandle(Geom_ToroidalSurface self) -> Handle_Geom_ToroidalSurface

MajorRadius()
  • Returns the major radius, or the minor radius, of this torus.
Return type:float
MinorRadius()
  • Returns the major radius, or the minor radius, of this torus.
Return type:float
SetMajorRadius()
  • Modifies this torus by changing its major radius. Exceptions Standard_ConstructionError if: - MajorRadius is negative, or - MajorRadius - r is less than or equal to gp::Resolution(), where r is the minor radius of this torus.
Parameters:MajorRadius (float) –
Return type:None
SetMinorRadius()
  • Modifies this torus by changing its minor radius. Exceptions Standard_ConstructionError if: - MinorRadius is negative, or - R - MinorRadius is less than or equal to gp::Resolution(), where R is the major radius of this torus.
Parameters:MinorRadius (float) –
Return type:None
SetTorus()
  • Converts the gp_Torus torus T into this torus.
Parameters:T (gp_Torus) –
Return type:None
Torus()
  • Returns the non transient torus with the same geometric properties as <self>.
Return type:gp_Torus
Volume()
  • Computes the volume.
Return type:float
thisown

The membership flag

class OCC.Geom.Geom_Transformation(*args)

Bases: OCC.MMgt.MMgt_TShared

Copy()
  • Creates a new object which is a copy of this transformation.
Return type:Handle_Geom_Transformation
Form()
  • Returns the nature of this transformation as a value of the gp_TrsfForm enumeration.
Return type:gp_TrsfForm
GetHandle()

Geom_Transformation_GetHandle(Geom_Transformation self) -> Handle_Geom_Transformation

Invert()
  • Raised if the the transformation is singular. This means that the ScaleFactor is lower or equal to Resolution from package gp.
Return type:None
Inverted()
  • Raised if the the transformation is singular. This means that the ScaleFactor is lower or equal to Resolution from package gp.
Return type:Handle_Geom_Transformation
IsNegative()
  • Checks whether this transformation is an indirect transformation: returns true if the determinant of the matrix of the vectorial part of the transformation is less than 0.
Return type:bool
Multiplied()
  • Computes the transformation composed with Other and <self>. <self> * Other. Returns a new transformation
Parameters:Other (Handle_Geom_Transformation &) –
Return type:Handle_Geom_Transformation
Multiply()
  • Computes the transformation composed with Other and <self> . <self> = <self> * Other.
Parameters:Other (Handle_Geom_Transformation &) –
Return type:None
Power()
  • Computes the following composition of transformations if N > 0 <self> * <self> * .......* <self>. if N = 0 Identity if N < 0 <self>.Invert() * .........* <self>.Invert() Raised if N < 0 and if the transformation is not inversible
Parameters:N (Standard_Integer) –
Return type:None
Powered()
  • Raised if N < 0 and if the transformation is not inversible
Parameters:N (Standard_Integer) –
Return type:Handle_Geom_Transformation
PreMultiply()
  • Computes the matrix of the transformation composed with <self> and Other. <self> = Other * <self>
Parameters:Other (Handle_Geom_Transformation &) –
Return type:None
ScaleFactor()
  • Returns the scale value of the transformation.
Return type:float
SetMirror()
  • Makes the transformation into a symmetrical transformation with respect to a point P. P is the center of the symmetry.
Parameters:P (gp_Pnt) –
Return type:None
  • Makes the transformation into a symmetrical transformation with respect to an axis A1. A1 is the center of the axial symmetry.
Parameters:A1 (gp_Ax1) –
Return type:None
  • Makes the transformation into a symmetrical transformation with respect to a plane. The plane of the symmetry is defined with the axis placement A2. It is the plane (Location, XDirection, YDirection).
Parameters:A2 (gp_Ax2) –
Return type:None
SetRotation()
  • Makes the transformation into a rotation. A1 is the axis rotation and Ang is the angular value of the rotation in radians.
Parameters:
  • A1 (gp_Ax1) –
  • Ang (float) –
Return type:

None

SetScale()
  • Makes the transformation into a scale. P is the center of the scale and S is the scaling value.
Parameters:
  • P (gp_Pnt) –
  • S (float) –
Return type:

None

SetTransformation()
  • Makes a transformation allowing passage from the coordinate system ‘FromSystem1’ to the coordinate system ‘ToSystem2’. Example : In a C++ implementation : Real x1, y1, z1; // are the coordinates of a point in the // local system FromSystem1 Real x2, y2, z2; // are the coordinates of a point in the // local system ToSystem2 gp_Pnt P1 (x1, y1, z1) Geom_Transformation T; T.SetTransformation (FromSystem1, ToSystem2); gp_Pnt P2 = P1.Transformed (T); P2.Coord (x2, y2, z2);
Parameters:
  • FromSystem1 (gp_Ax3) –
  • ToSystem2 (gp_Ax3) –
Return type:

None

  • Makes the transformation allowing passage from the basic coordinate system {P(0.,0.,0.), VX (1.,0.,0.), VY (0.,1.,0.), VZ (0., 0. ,1.) } to the local coordinate system defined with the Ax2 ToSystem. Same utilisation as the previous method. FromSystem1 is defaulted to the absolute coordinate system.
Parameters:ToSystem (gp_Ax3) –
Return type:None
SetTranslation()
  • Makes the transformation into a translation. V is the vector of the translation.
Parameters:V (gp_Vec) –
Return type:None
  • Makes the transformation into a translation from the point P1 to the point P2.
Parameters:
  • P1 (gp_Pnt) –
  • P2 (gp_Pnt) –
Return type:

None

SetTrsf()
  • Converts the gp_Trsf transformation T into this transformation.
Parameters:T (gp_Trsf) –
Return type:None
Transforms()
  • Applies the transformation <self> to the triplet {X, Y, Z}.
Parameters:
  • X (float &) –
  • Y (float &) –
  • Z (float &) –
Return type:

None

Trsf()
  • Returns a non transient copy of <self>.
Return type:gp_Trsf
Value()
  • Returns the coefficients of the global matrix of tranformation. It is a 3 rows X 4 columns matrix. Raised if Row < 1 or Row > 3 or Col < 1 or Col > 4 Computes the reverse transformation.
Parameters:
  • Row (Standard_Integer) –
  • Col (Standard_Integer) –
Return type:

float

thisown

The membership flag

class OCC.Geom.Geom_TrimmedCurve(*args)

Bases: OCC.Geom.Geom_BoundedCurve

BasisCurve()
  • Returns the basis curve. Warning This function does not return a constant reference. Consequently, any modification of the returned value directly modifies the trimmed curve.
Return type:Handle_Geom_Curve
GetHandle()

Geom_TrimmedCurve_GetHandle(Geom_TrimmedCurve self) -> Handle_Geom_TrimmedCurve

SetTrim()
  • Changes this trimmed curve, by redefining the parameter values U1 and U2 which limit its basis curve. Note: If the basis curve is periodic, the trimmed curve has the same orientation as the basis curve if Sense is true (default value) or the opposite orientation if Sense is false. Warning If the basis curve is periodic, the bounds of the trimmed curve may be different from U1 and U2 if the parametric origin of the basis curve is within the arc of the trimmed curve. In this case, the modified parameter will be equal to U1 or U2 plus or minus the period. Exceptions Standard_ConstructionError if: - the basis curve is not periodic, and either U1 or U2 are outside the bounds of the basis curve, or - U1 is equal to U2.
Parameters:
  • U1 (float) –
  • U2 (float) –
  • Sense (bool) – default value is Standard_True
Return type:

None

  • Changes this trimmed curve, by redefining the parameter values U1 and U2 which limit its basis curve. Note: If the basis curve is periodic, the trimmed curve has the same orientation as the basis curve if Sense is true (default value) or the opposite orientation if Sense is false. Warning If the basis curve is periodic, the bounds of the trimmed curve may be different from U1 and U2 if the parametric origin of the basis curve is within the arc of the trimmed curve. In this case, the modified parameter will be equal to U1 or U2 plus or minus the period. Exceptions Standard_ConstructionError if: - the basis curve is not periodic, and either U1 or U2 are outside the bounds of the basis curve, or - U1 is equal to U2.
Parameters:
  • U1 (float) –
  • U2 (float) –
  • Sense (bool) – default value is Standard_True
Return type:

None

thisown

The membership flag

class OCC.Geom.Geom_Vector(*args, **kwargs)

Bases: OCC.Geom.Geom_Geometry

Angle()
  • Computes the angular value, in radians, between this vector and vector Other. The result is a value between 0 and Pi. Exceptions gp_VectorWithNullMagnitude if: - the magnitude of this vector is less than or equal to gp::Resolution(), or - the magnitude of vector Other is less than or equal to gp::Resolution().
Parameters:Other (Handle_Geom_Vector &) –
Return type:float
AngleWithRef()
  • Computes the angular value, in radians, between this vector and vector Other. The result is a value between -Pi and Pi. The vector VRef defines the positive sense of rotation: the angular value is positive if the cross product this ^ Other has the same orientation as VRef (in relation to the plane defined by this vector and vector Other). Otherwise, it is negative. Exceptions Standard_DomainError if this vector, vector Other and vector VRef are coplanar, except if this vector and vector Other are parallel. gp_VectorWithNullMagnitude if the magnitude of this vector, vector Other or vector VRef is less than or equal to gp::Resolution().
Parameters:
  • Other (Handle_Geom_Vector &) –
  • VRef (Handle_Geom_Vector &) –
Return type:

float

Coord()
  • Returns the coordinates X, Y and Z of this vector.
Parameters:
  • X (float &) –
  • Y (float &) –
  • Z (float &) –
Return type:

None

Cross()
  • Computes the cross product between <self> and <Other>. Raised if <self> is a ‘Direction’ and if <self> and <Other> are parallel because it is not possible to build a ‘Direction’ with null length.
Parameters:Other (Handle_Geom_Vector &) –
Return type:void
CrossCross()
  • Computes the triple vector product <self> ^(V1 ^ V2). Raised if <self> is a ‘Direction’ and if V1 and V2 are parallel or <self> and (V1 ^ V2) are parallel
Parameters:
  • V1 (Handle_Geom_Vector &) –
  • V2 (Handle_Geom_Vector &) –
Return type:

void

CrossCrossed()
  • Computes the triple vector product <self> ^(V1 ^ V2). Raised if <self> is a direction and if V1 and V2 are parallel or <self> and (V1 ^ V2) are parallel
Parameters:
  • V1 (Handle_Geom_Vector &) –
  • V2 (Handle_Geom_Vector &) –
Return type:

Handle_Geom_Vector

Crossed()
  • Computes the cross product between <self> and <Other>. A new direction is returned. Raised if <self> is a ‘Direction’ and if the two vectors are parallel because it is not possible to create a ‘Direction’ with null length.
Parameters:Other (Handle_Geom_Vector &) –
Return type:Handle_Geom_Vector
Dot()
  • Computes the scalar product of this vector and vector Other.
Parameters:Other (Handle_Geom_Vector &) –
Return type:float
DotCross()
  • Computes the triple scalar product. Returns me . (V1 ^ V2)
Parameters:
  • V1 (Handle_Geom_Vector &) –
  • V2 (Handle_Geom_Vector &) –
Return type:

float

GetHandle()

Geom_Vector_GetHandle(Geom_Vector self) -> Handle_Geom_Vector

Magnitude()
  • Returns the Magnitude of <self>.
Return type:float
Reverse()
  • Reverses the vector <self>.
Return type:None
Reversed()
  • Returns a copy of <self> reversed.
Return type:Handle_Geom_Vector
SquareMagnitude()
  • Returns the square magnitude of <self>.
Return type:float
Vec()
  • Converts this vector into a gp_Vec vector.
Return type:gp_Vec
X()
  • Returns the X coordinate of <self>.
Return type:float
Y()
  • Returns the Y coordinate of <self>.
Return type:float
Z()
  • Returns the Z coordinate of <self>.
Return type:float
thisown

The membership flag

class OCC.Geom.Geom_VectorWithMagnitude(*args)

Bases: OCC.Geom.Geom_Vector

Add()
  • Adds the Vector Other to <self>.
Parameters:Other (Handle_Geom_Vector &) –
Return type:None
Added()
  • Adds the vector Other to <self>.
Parameters:Other (Handle_Geom_Vector &) –
Return type:Handle_Geom_VectorWithMagnitude
Divide()
  • Divides <self> by a scalar.
Parameters:Scalar (float) –
Return type:None
Divided()
  • Divides <self> by a scalar. A new vector is returned.
Parameters:Scalar (float) –
Return type:Handle_Geom_VectorWithMagnitude
GetHandle()

Geom_VectorWithMagnitude_GetHandle(Geom_VectorWithMagnitude self) -> Handle_Geom_VectorWithMagnitude

Multiplied()
  • Computes the product of the vector <self> by a scalar. A new vector is returned.
Parameters:Scalar (float) –
Return type:Handle_Geom_VectorWithMagnitude
Multiply()
  • Computes the product of the vector <self> by a scalar.
Parameters:Scalar (float) –
Return type:None
Normalize()
  • Normalizes <self>. Raised if the magnitude of the vector is lower or equal to Resolution from package gp.
Return type:None
Normalized()
  • Returns a copy of <self> Normalized. Raised if the magnitude of the vector is lower or equal to Resolution from package gp.
Return type:Handle_Geom_VectorWithMagnitude
SetCoord()
  • Assigns the values X, Y and Z to the coordinates of this vector.
Parameters:
  • X (float) –
  • Y (float) –
  • Z (float) –
Return type:

None

SetVec()
  • Converts the gp_Vec vector V into this vector.
Parameters:V (gp_Vec) –
Return type:None
SetX()
  • Changes the X coordinate of <self>.
Parameters:X (float) –
Return type:None
SetY()
  • Changes the Y coordinate of <self>
Parameters:Y (float) –
Return type:None
SetZ()
  • Changes the Z coordinate of <self>.
Parameters:Z (float) –
Return type:None
Subtract()
  • Subtracts the Vector Other to <self>.
Parameters:Other (Handle_Geom_Vector &) –
Return type:None
Subtracted()
  • Subtracts the vector Other to <self>. A new vector is returned.
Parameters:Other (Handle_Geom_Vector &) –
Return type:Handle_Geom_VectorWithMagnitude
thisown

The membership flag

class OCC.Geom.Handle_Geom_Axis1Placement(*args)

Bases: OCC.Geom.Handle_Geom_AxisPlacement

static DownCast()
GetObject()
IsNull()
Nullify()
thisown

The membership flag

class OCC.Geom.Handle_Geom_Axis2Placement(*args)

Bases: OCC.Geom.Handle_Geom_AxisPlacement

static DownCast()
GetObject()
IsNull()
Nullify()
thisown

The membership flag

class OCC.Geom.Handle_Geom_AxisPlacement(*args)

Bases: OCC.Geom.Handle_Geom_Geometry

static DownCast()
GetObject()
IsNull()
Nullify()
thisown

The membership flag

class OCC.Geom.Handle_Geom_BSplineCurve(*args)

Bases: OCC.Geom.Handle_Geom_BoundedCurve

static DownCast()
GetObject()
IsNull()
Nullify()
thisown

The membership flag

class OCC.Geom.Handle_Geom_BSplineSurface(*args)

Bases: OCC.Geom.Handle_Geom_BoundedSurface

static DownCast()
GetObject()
IsNull()
Nullify()
thisown

The membership flag

class OCC.Geom.Handle_Geom_BezierCurve(*args)

Bases: OCC.Geom.Handle_Geom_BoundedCurve

static DownCast()
GetObject()
IsNull()
Nullify()
thisown

The membership flag

class OCC.Geom.Handle_Geom_BezierSurface(*args)

Bases: OCC.Geom.Handle_Geom_BoundedSurface

static DownCast()
GetObject()
IsNull()
Nullify()
thisown

The membership flag

class OCC.Geom.Handle_Geom_BoundedCurve(*args)

Bases: OCC.Geom.Handle_Geom_Curve

static DownCast()
GetObject()
IsNull()
Nullify()
thisown

The membership flag

class OCC.Geom.Handle_Geom_BoundedSurface(*args)

Bases: OCC.Geom.Handle_Geom_Surface

static DownCast()
GetObject()
IsNull()
Nullify()
thisown

The membership flag

class OCC.Geom.Handle_Geom_CartesianPoint(*args)

Bases: OCC.Geom.Handle_Geom_Point

static DownCast()
GetObject()
IsNull()
Nullify()
thisown

The membership flag

class OCC.Geom.Handle_Geom_Circle(*args)

Bases: OCC.Geom.Handle_Geom_Conic

static DownCast()
GetObject()
IsNull()
Nullify()
thisown

The membership flag

class OCC.Geom.Handle_Geom_Conic(*args)

Bases: OCC.Geom.Handle_Geom_Curve

static DownCast()
GetObject()
IsNull()
Nullify()
thisown

The membership flag

class OCC.Geom.Handle_Geom_ConicalSurface(*args)

Bases: OCC.Geom.Handle_Geom_ElementarySurface

static DownCast()
GetObject()
IsNull()
Nullify()
thisown

The membership flag

class OCC.Geom.Handle_Geom_Curve(*args)

Bases: OCC.Geom.Handle_Geom_Geometry

static DownCast()
GetObject()
IsNull()
Nullify()
thisown

The membership flag

class OCC.Geom.Handle_Geom_CylindricalSurface(*args)

Bases: OCC.Geom.Handle_Geom_ElementarySurface

static DownCast()
GetObject()
IsNull()
Nullify()
thisown

The membership flag

class OCC.Geom.Handle_Geom_Direction(*args)

Bases: OCC.Geom.Handle_Geom_Vector

static DownCast()
GetObject()
IsNull()
Nullify()
thisown

The membership flag

class OCC.Geom.Handle_Geom_ElementarySurface(*args)

Bases: OCC.Geom.Handle_Geom_Surface

static DownCast()
GetObject()
IsNull()
Nullify()
thisown

The membership flag

class OCC.Geom.Handle_Geom_Ellipse(*args)

Bases: OCC.Geom.Handle_Geom_Conic

static DownCast()
GetObject()
IsNull()
Nullify()
thisown

The membership flag

class OCC.Geom.Handle_Geom_Geometry(*args)

Bases: OCC.MMgt.Handle_MMgt_TShared

static DownCast()
GetObject()
IsNull()
Nullify()
thisown

The membership flag

class OCC.Geom.Handle_Geom_HSequenceOfBSplineSurface(*args)

Bases: OCC.MMgt.Handle_MMgt_TShared

static DownCast()
GetObject()
IsNull()
Nullify()
thisown

The membership flag

class OCC.Geom.Handle_Geom_HSequenceOfSurface(*args)

Bases: OCC.MMgt.Handle_MMgt_TShared

static DownCast()
GetObject()
IsNull()
Nullify()
thisown

The membership flag

class OCC.Geom.Handle_Geom_Hyperbola(*args)

Bases: OCC.Geom.Handle_Geom_Conic

static DownCast()
GetObject()
IsNull()
Nullify()
thisown

The membership flag

class OCC.Geom.Handle_Geom_Line(*args)

Bases: OCC.Geom.Handle_Geom_Curve

static DownCast()
GetObject()
IsNull()
Nullify()
thisown

The membership flag

class OCC.Geom.Handle_Geom_OffsetCurve(*args)

Bases: OCC.Geom.Handle_Geom_Curve

static DownCast()
GetObject()
IsNull()
Nullify()
thisown

The membership flag

class OCC.Geom.Handle_Geom_OffsetSurface(*args)

Bases: OCC.Geom.Handle_Geom_Surface

static DownCast()
GetObject()
IsNull()
Nullify()
thisown

The membership flag

class OCC.Geom.Handle_Geom_Parabola(*args)

Bases: OCC.Geom.Handle_Geom_Conic

static DownCast()
GetObject()
IsNull()
Nullify()
thisown

The membership flag

class OCC.Geom.Handle_Geom_Plane(*args)

Bases: OCC.Geom.Handle_Geom_ElementarySurface

static DownCast()
GetObject()
IsNull()
Nullify()
thisown

The membership flag

class OCC.Geom.Handle_Geom_Point(*args)

Bases: OCC.Geom.Handle_Geom_Geometry

static DownCast()
GetObject()
IsNull()
Nullify()
thisown

The membership flag

class OCC.Geom.Handle_Geom_RectangularTrimmedSurface(*args)

Bases: OCC.Geom.Handle_Geom_BoundedSurface

static DownCast()
GetObject()
IsNull()
Nullify()
thisown

The membership flag

class OCC.Geom.Handle_Geom_SequenceNodeOfSequenceOfBSplineSurface(*args)

Bases: OCC.TCollection.Handle_TCollection_SeqNode

static DownCast()
GetObject()
IsNull()
Nullify()
thisown

The membership flag

class OCC.Geom.Handle_Geom_SequenceNodeOfSequenceOfSurface(*args)

Bases: OCC.TCollection.Handle_TCollection_SeqNode

static DownCast()
GetObject()
IsNull()
Nullify()
thisown

The membership flag

class OCC.Geom.Handle_Geom_SphericalSurface(*args)

Bases: OCC.Geom.Handle_Geom_ElementarySurface

static DownCast()
GetObject()
IsNull()
Nullify()
thisown

The membership flag

class OCC.Geom.Handle_Geom_Surface(*args)

Bases: OCC.Geom.Handle_Geom_Geometry

static DownCast()
GetObject()
IsNull()
Nullify()
thisown

The membership flag

class OCC.Geom.Handle_Geom_SurfaceOfLinearExtrusion(*args)

Bases: OCC.Geom.Handle_Geom_SweptSurface

static DownCast()
GetObject()
IsNull()
Nullify()
thisown

The membership flag

class OCC.Geom.Handle_Geom_SurfaceOfRevolution(*args)

Bases: OCC.Geom.Handle_Geom_SweptSurface

static DownCast()
GetObject()
IsNull()
Nullify()
thisown

The membership flag

class OCC.Geom.Handle_Geom_SweptSurface(*args)

Bases: OCC.Geom.Handle_Geom_Surface

static DownCast()
GetObject()
IsNull()
Nullify()
thisown

The membership flag

class OCC.Geom.Handle_Geom_ToroidalSurface(*args)

Bases: OCC.Geom.Handle_Geom_ElementarySurface

static DownCast()
GetObject()
IsNull()
Nullify()
thisown

The membership flag

class OCC.Geom.Handle_Geom_Transformation(*args)

Bases: OCC.MMgt.Handle_MMgt_TShared

static DownCast()
GetObject()
IsNull()
Nullify()
thisown

The membership flag

class OCC.Geom.Handle_Geom_TrimmedCurve(*args)

Bases: OCC.Geom.Handle_Geom_BoundedCurve

static DownCast()
GetObject()
IsNull()
Nullify()
thisown

The membership flag

class OCC.Geom.Handle_Geom_Vector(*args)

Bases: OCC.Geom.Handle_Geom_Geometry

static DownCast()
GetObject()
IsNull()
Nullify()
thisown

The membership flag

class OCC.Geom.Handle_Geom_VectorWithMagnitude(*args)

Bases: OCC.Geom.Handle_Geom_Vector

static DownCast()
GetObject()
IsNull()
Nullify()
thisown

The membership flag

class OCC.Geom.SwigPyIterator(*args, **kwargs)

Bases: object

advance()
copy()
decr()
distance()
equal()
incr()
next()
previous()
thisown

The membership flag

value()