OCC.CPnts module

class OCC.CPnts.CPnts_AbscissaPoint(*args)

Bases: object

AdvPerform()
  • Computes the point at the distance <Abscissa> of the curve; performs more appropriate tolerance managment; to use this method in right way it is necessary to call empty consructor. then call method Init with //! Tolerance = Resolution, then call AdvPermorm.
Parameters:
  • Abscissa (float) –
  • U0 (float) –
  • Ui (float) –
  • Resolution (float) –
Return type:

None

Init()
  • Initializes the resolution function with <C>.
Parameters:C (Adaptor3d_Curve &) –
Return type:None
  • Initializes the resolution function with <C>.
Parameters:C (Adaptor2d_Curve2d &) –
Return type:None
  • Initializes the resolution function with <C>.
Parameters:
  • C (Adaptor3d_Curve &) –
  • Tol (float) –
Return type:

None

  • Initializes the resolution function with <C>.
Parameters:
  • C (Adaptor2d_Curve2d &) –
  • Tol (float) –
Return type:

None

  • Initializes the resolution function with <C> between U1 and U2.
Parameters:
  • C (Adaptor3d_Curve &) –
  • U1 (float) –
  • U2 (float) –
Return type:

None

  • Initializes the resolution function with <C> between U1 and U2.
Parameters:
  • C (Adaptor2d_Curve2d &) –
  • U1 (float) –
  • U2 (float) –
Return type:

None

  • Initializes the resolution function with <C> between U1 and U2.
Parameters:
  • C (Adaptor3d_Curve &) –
  • U1 (float) –
  • U2 (float) –
  • Tol (float) –
Return type:

None

  • Initializes the resolution function with <C> between U1 and U2.
Parameters:
  • C (Adaptor2d_Curve2d &) –
  • U1 (float) –
  • U2 (float) –
  • Tol (float) –
Return type:

None

IsDone()
  • True if the computation was successful, False otherwise.
Return type:bool
static Length(*args)
  • Computes the length of the Curve <C>.
Parameters:C (Adaptor3d_Curve &) –
Return type:float
  • Computes the length of the Curve <C>.
Parameters:C (Adaptor2d_Curve2d &) –
Return type:float
  • Computes the length of the Curve <C> with the given tolerance.
Parameters:
  • C (Adaptor3d_Curve &) –
  • Tol (float) –
Return type:

float

  • Computes the length of the Curve <C> with the given tolerance.
Parameters:
  • C (Adaptor2d_Curve2d &) –
  • Tol (float) –
Return type:

float

  • Computes the length of the Curve <C> between <U1> and <U2>.
Parameters:
  • C (Adaptor3d_Curve &) –
  • U1 (float) –
  • U2 (float) –
Return type:

float

  • Computes the length of the Curve <C> between <U1> and <U2>.
Parameters:
  • C (Adaptor2d_Curve2d &) –
  • U1 (float) –
  • U2 (float) –
Return type:

float

  • Computes the length of the Curve <C> between <U1> and <U2> with the given tolerance.
Parameters:
  • C (Adaptor3d_Curve &) –
  • U1 (float) –
  • U2 (float) –
  • Tol (float) –
Return type:

float

  • Computes the length of the Curve <C> between <U1> and <U2> with the given tolerance. creation of a indefinite AbscissaPoint.
Parameters:
  • C (Adaptor2d_Curve2d &) –
  • U1 (float) –
  • U2 (float) –
  • Tol (float) –
Return type:

float

Parameter()
  • Returns the parameter of the solution.
Return type:float
Perform()
  • Computes the point at the distance <Abscissa> of the curve.
Parameters:
  • Abscissa (float) –
  • U0 (float) –
  • Resolution (float) –
Return type:

None

  • Computes the point at the distance <Abscissa> of the curve.
Parameters:
  • Abscissa (float) –
  • U0 (float) –
  • Ui (float) –
  • Resolution (float) –
Return type:

None

SetParameter()
  • Enforce the solution, used by GCPnts.
Parameters:P (float) –
Return type:None
thisown

The membership flag

OCC.CPnts.CPnts_AbscissaPoint_Length(*args)
  • Computes the length of the Curve <C>.
Parameters:C (Adaptor3d_Curve &) –
Return type:float
  • Computes the length of the Curve <C>.
Parameters:C (Adaptor2d_Curve2d &) –
Return type:float
  • Computes the length of the Curve <C> with the given tolerance.
Parameters:
  • C (Adaptor3d_Curve &) –
  • Tol (float) –
Return type:

float

  • Computes the length of the Curve <C> with the given tolerance.
Parameters:
  • C (Adaptor2d_Curve2d &) –
  • Tol (float) –
Return type:

float

  • Computes the length of the Curve <C> between <U1> and <U2>.
Parameters:
  • C (Adaptor3d_Curve &) –
  • U1 (float) –
  • U2 (float) –
Return type:

float

  • Computes the length of the Curve <C> between <U1> and <U2>.
Parameters:
  • C (Adaptor2d_Curve2d &) –
  • U1 (float) –
  • U2 (float) –
Return type:

float

  • Computes the length of the Curve <C> between <U1> and <U2> with the given tolerance.
Parameters:
  • C (Adaptor3d_Curve &) –
  • U1 (float) –
  • U2 (float) –
  • Tol (float) –
Return type:

float

  • Computes the length of the Curve <C> between <U1> and <U2> with the given tolerance. creation of a indefinite AbscissaPoint.
Parameters:
  • C (Adaptor2d_Curve2d &) –
  • U1 (float) –
  • U2 (float) –
  • Tol (float) –
Return type:

float

class OCC.CPnts.CPnts_MyGaussFunction

Bases: object

Init()
  • F is a pointer on a function D is a client data Each value is computed with F(D)
Parameters:
  • F (CPnts_RealFunction &) –
  • D (Standard_Address) –
Return type:

None

Value()
Parameters:
  • X (float) –
  • F (float &) –
Return type:

bool

thisown

The membership flag

class OCC.CPnts.CPnts_MyRootFunction

Bases: object

Derivative()
  • This is F(X,D)
Parameters:
  • X (float) –
  • Df (float &) –
Return type:

bool

Init()
  • F is a pointer on a function D is a client data Order is the order of integration to use
Parameters:
  • F (CPnts_RealFunction &) –
  • D (Standard_Address) –
  • Order (Standard_Integer) –
Return type:

None

  • We want to solve Integral(X0,X,F(X,D)) = L
Parameters:
  • X0 (float) –
  • L (float) –
Return type:

None

  • We want to solve Integral(X0,X,F(X,D)) = L with given tolerance
Parameters:
  • X0 (float) –
  • L (float) –
  • Tol (float) –
Return type:

None

Value()
  • This is Integral(X0,X,F(X,D)) - L
Parameters:
  • X (float) –
  • F (float &) –
Return type:

bool

Values()
Parameters:
  • X (float) –
  • F (float &) –
  • Df (float &) –
Return type:

bool

thisown

The membership flag

class OCC.CPnts.CPnts_UniformDeflection(*args)

Bases: object

Initialize()
  • Initialize the algoritms with <C>, <Deflection>, <UStep>, <Resolution> and <WithControl>
Parameters:
  • C (Adaptor3d_Curve &) –
  • Deflection (float) –
  • Resolution (float) –
  • WithControl (bool) –
Return type:

None

  • Initialize the algoritms with <C>, <Deflection>, <UStep>, <Resolution> and <WithControl>
Parameters:
  • C (Adaptor2d_Curve2d &) –
  • Deflection (float) –
  • Resolution (float) –
  • WithControl (bool) –
Return type:

None

  • Initialize the algoritms with <C>, <Deflection>, <UStep>, <U1>, <U2> and <WithControl>
Parameters:
  • C (Adaptor3d_Curve &) –
  • Deflection (float) –
  • U1 (float) –
  • U2 (float) –
  • Resolution (float) –
  • WithControl (bool) –
Return type:

None

  • Initialize the algoritms with <C>, <Deflection>, <UStep>, <U1>, <U2> and <WithControl>
Parameters:
  • C (Adaptor2d_Curve2d &) –
  • Deflection (float) –
  • U1 (float) –
  • U2 (float) –
  • Resolution (float) –
  • WithControl (bool) –
Return type:

None

IsAllDone()
  • To know if all the calculus were done successfully (ie all the points have been computed). The calculus can fail if the Curve is not C1 in the considered domain. Returns True if the calculus was successful.
Return type:bool
More()
  • returns True if it exists a next Point.
Return type:bool
Next()
  • go to the next Point.
Return type:None
Point()
  • return the computed parameter
Return type:gp_Pnt
Value()
  • return the computed parameter
Return type:float
thisown

The membership flag

class OCC.CPnts.SwigPyIterator(*args, **kwargs)

Bases: object

advance()
copy()
decr()
distance()
equal()
incr()
next()
previous()
thisown

The membership flag

value()