OCC.BSplSLib module

class OCC.BSplSLib.SwigPyIterator(*args, **kwargs)

Bases: object

advance()
copy()
decr()
distance()
equal()
incr()
next()
previous()
thisown

The membership flag

value()
class OCC.BSplSLib.bsplslib(*args, **kwargs)

Bases: object

static BuildCache(*args)
  • Perform the evaluation of the Taylor expansion of the Bspline normalized between 0 and 1. If rational computes the homogeneous Taylor expension for the numerator and stores it in CachePoles
Parameters:
  • U (float) –
  • V (float) –
  • USpanDomain (float) –
  • VSpanDomain (float) –
  • UPeriodicFlag (bool) –
  • VPeriodicFlag (bool) –
  • UDegree (Standard_Integer) –
  • VDegree (Standard_Integer) –
  • UIndex (Standard_Integer) –
  • VIndex (Standard_Integer) –
  • UFlatKnots (TColStd_Array1OfReal &) –
  • VFlatKnots (TColStd_Array1OfReal &) –
  • Poles (TColgp_Array2OfPnt) –
  • Weights (TColStd_Array2OfReal &) –
  • CachePoles (TColgp_Array2OfPnt) –
  • CacheWeights (TColStd_Array2OfReal &) –
Return type:

void

static CacheD0(*args)
  • Perform the evaluation of the of the cache the parameter must be normalized between the 0 and 1 for the span. The Cache must be valid when calling this routine. Geom Package will insure that. and then multiplies by the weights this just evaluates the current point the CacheParameter is where the Cache was constructed the SpanLength is to normalize the polynomial in the cache to avoid bad conditioning effects
Parameters:
  • U (float) –
  • V (float) –
  • UDegree (Standard_Integer) –
  • VDegree (Standard_Integer) –
  • UCacheParameter (float) –
  • VCacheParameter (float) –
  • USpanLenght (float) –
  • VSpanLength (float) –
  • Poles (TColgp_Array2OfPnt) –
  • Weights (TColStd_Array2OfReal &) –
  • Point (gp_Pnt) –
Return type:

void

static CacheD1(*args)
  • Perform the evaluation of the of the cache the parameter must be normalized between the 0 and 1 for the span. The Cache must be valid when calling this routine. Geom Package will insure that. and then multiplies by the weights this just evaluates the current point the CacheParameter is where the Cache was constructed the SpanLength is to normalize the polynomial in the cache to avoid bad conditioning effects
Parameters:
  • U (float) –
  • V (float) –
  • UDegree (Standard_Integer) –
  • VDegree (Standard_Integer) –
  • UCacheParameter (float) –
  • VCacheParameter (float) –
  • USpanLenght (float) –
  • VSpanLength (float) –
  • Poles (TColgp_Array2OfPnt) –
  • Weights (TColStd_Array2OfReal &) –
  • Point (gp_Pnt) –
  • VecU (gp_Vec) –
  • VecV (gp_Vec) –
Return type:

void

static CacheD2(*args)
  • Perform the evaluation of the of the cache the parameter must be normalized between the 0 and 1 for the span. The Cache must be valid when calling this routine. Geom Package will insure that. and then multiplies by the weights this just evaluates the current point the CacheParameter is where the Cache was constructed the SpanLength is to normalize the polynomial in the cache to avoid bad conditioning effects
Parameters:
  • U (float) –
  • V (float) –
  • UDegree (Standard_Integer) –
  • VDegree (Standard_Integer) –
  • UCacheParameter (float) –
  • VCacheParameter (float) –
  • USpanLenght (float) –
  • VSpanLength (float) –
  • Poles (TColgp_Array2OfPnt) –
  • Weights (TColStd_Array2OfReal &) –
  • Point (gp_Pnt) –
  • VecU (gp_Vec) –
  • VecV (gp_Vec) –
  • VecUU (gp_Vec) –
  • VecUV (gp_Vec) –
  • VecVV (gp_Vec) –
Return type:

void

static CoefsD0(*args)
  • Calls CacheD0 for Bezier Surfaces Arrays computed with the method PolesCoefficients. Warning: To be used for BezierSurfaces ONLY!!!
Parameters:
  • U (float) –
  • V (float) –
  • Poles (TColgp_Array2OfPnt) –
  • Weights (TColStd_Array2OfReal &) –
  • Point (gp_Pnt) –
Return type:

void

static CoefsD1(*args)
  • Calls CacheD0 for Bezier Surfaces Arrays computed with the method PolesCoefficients. Warning: To be used for BezierSurfaces ONLY!!!
Parameters:
  • U (float) –
  • V (float) –
  • Poles (TColgp_Array2OfPnt) –
  • Weights (TColStd_Array2OfReal &) –
  • Point (gp_Pnt) –
  • VecU (gp_Vec) –
  • VecV (gp_Vec) –
Return type:

void

static CoefsD2(*args)
  • Calls CacheD0 for Bezier Surfaces Arrays computed with the method PolesCoefficients. Warning: To be used for BezierSurfaces ONLY!!!
Parameters:
  • U (float) –
  • V (float) –
  • Poles (TColgp_Array2OfPnt) –
  • Weights (TColStd_Array2OfReal &) –
  • Point (gp_Pnt) –
  • VecU (gp_Vec) –
  • VecV (gp_Vec) –
  • VecUU (gp_Vec) –
  • VecUV (gp_Vec) –
  • VecVV (gp_Vec) –
Return type:

void

static D0(*args)
Parameters:
  • U (float) –
  • V (float) –
  • UIndex (Standard_Integer) –
  • VIndex (Standard_Integer) –
  • Poles (TColgp_Array2OfPnt) –
  • Weights (TColStd_Array2OfReal &) –
  • UKnots (TColStd_Array1OfReal &) –
  • VKnots (TColStd_Array1OfReal &) –
  • UMults (TColStd_Array1OfInteger &) –
  • VMults (TColStd_Array1OfInteger &) –
  • UDegree (Standard_Integer) –
  • VDegree (Standard_Integer) –
  • URat (bool) –
  • VRat (bool) –
  • UPer (bool) –
  • VPer (bool) –
  • P (gp_Pnt) –
Return type:

void

static D1(*args)
Parameters:
  • U (float) –
  • V (float) –
  • UIndex (Standard_Integer) –
  • VIndex (Standard_Integer) –
  • Poles (TColgp_Array2OfPnt) –
  • Weights (TColStd_Array2OfReal &) –
  • UKnots (TColStd_Array1OfReal &) –
  • VKnots (TColStd_Array1OfReal &) –
  • UMults (TColStd_Array1OfInteger &) –
  • VMults (TColStd_Array1OfInteger &) –
  • Degree (Standard_Integer) –
  • VDegree (Standard_Integer) –
  • URat (bool) –
  • VRat (bool) –
  • UPer (bool) –
  • VPer (bool) –
  • P (gp_Pnt) –
  • Vu (gp_Vec) –
  • Vv (gp_Vec) –
Return type:

void

static D2(*args)
Parameters:
  • U (float) –
  • V (float) –
  • UIndex (Standard_Integer) –
  • VIndex (Standard_Integer) –
  • Poles (TColgp_Array2OfPnt) –
  • Weights (TColStd_Array2OfReal &) –
  • UKnots (TColStd_Array1OfReal &) –
  • VKnots (TColStd_Array1OfReal &) –
  • UMults (TColStd_Array1OfInteger &) –
  • VMults (TColStd_Array1OfInteger &) –
  • UDegree (Standard_Integer) –
  • VDegree (Standard_Integer) –
  • URat (bool) –
  • VRat (bool) –
  • UPer (bool) –
  • VPer (bool) –
  • P (gp_Pnt) –
  • Vu (gp_Vec) –
  • Vv (gp_Vec) –
  • Vuu (gp_Vec) –
  • Vvv (gp_Vec) –
  • Vuv (gp_Vec) –
Return type:

void

static D3(*args)
Parameters:
  • U (float) –
  • V (float) –
  • UIndex (Standard_Integer) –
  • VIndex (Standard_Integer) –
  • Poles (TColgp_Array2OfPnt) –
  • Weights (TColStd_Array2OfReal &) –
  • UKnots (TColStd_Array1OfReal &) –
  • VKnots (TColStd_Array1OfReal &) –
  • UMults (TColStd_Array1OfInteger &) –
  • VMults (TColStd_Array1OfInteger &) –
  • UDegree (Standard_Integer) –
  • VDegree (Standard_Integer) –
  • URat (bool) –
  • VRat (bool) –
  • UPer (bool) –
  • VPer (bool) –
  • P (gp_Pnt) –
  • Vu (gp_Vec) –
  • Vv (gp_Vec) –
  • Vuu (gp_Vec) –
  • Vvv (gp_Vec) –
  • Vuv (gp_Vec) –
  • Vuuu (gp_Vec) –
  • Vvvv (gp_Vec) –
  • Vuuv (gp_Vec) –
  • Vuvv (gp_Vec) –
Return type:

void

static DN(*args)
Parameters:
  • U (float) –
  • V (float) –
  • Nu (Standard_Integer) –
  • Nv (Standard_Integer) –
  • UIndex (Standard_Integer) –
  • VIndex (Standard_Integer) –
  • Poles (TColgp_Array2OfPnt) –
  • Weights (TColStd_Array2OfReal &) –
  • UKnots (TColStd_Array1OfReal &) –
  • VKnots (TColStd_Array1OfReal &) –
  • UMults (TColStd_Array1OfInteger &) –
  • VMults (TColStd_Array1OfInteger &) –
  • UDegree (Standard_Integer) –
  • VDegree (Standard_Integer) –
  • URat (bool) –
  • VRat (bool) –
  • UPer (bool) –
  • VPer (bool) –
  • Vn (gp_Vec) –
Return type:

void

static FunctionMultiply(*args)
  • this will multiply a given BSpline numerator N(u,v) and denominator D(u,v) defined by its U/VBSplineDegree and U/VBSplineKnots, and U/VMults. Its Poles and Weights are arrays which are coded as array2 of the form [1..UNumPoles][1..VNumPoles] by a function a(u,v) which is assumed to satisfy the following : 1. a(u,v) * N(u,v) and a(u,v) * D(u,v) is a polynomial BSpline that can be expressed exactly as a BSpline of degree U/VNewDegree on the knots U/VFlatKnots 2. the range of a(u,v) is the same as the range of N(u,v) or D(u,v) —Warning: it is the caller’s responsability to insure that conditions 1. and 2. above are satisfied : no check whatsoever is made in this method – Status will return 0 if OK else it will return the pivot index – of the matrix that was inverted to compute the multiplied – BSpline : the method used is interpolation at Schoenenberg – points of a(u,v)* N(u,v) and a(u,v) * D(u,v) Status will return 0 if OK else it will return the pivot index of the matrix that was inverted to compute the multiplied BSpline : the method used is interpolation at Schoenenberg points of a(u,v)*F(u,v) –
Parameters:
  • Function (BSplSLib_EvaluatorFunction &) –
  • UBSplineDegree (Standard_Integer) –
  • VBSplineDegree (Standard_Integer) –
  • UBSplineKnots (TColStd_Array1OfReal &) –
  • VBSplineKnots (TColStd_Array1OfReal &) –
  • UMults (TColStd_Array1OfInteger &) –
  • VMults (TColStd_Array1OfInteger &) –
  • Poles (TColgp_Array2OfPnt) –
  • Weights (TColStd_Array2OfReal &) –
  • UFlatKnots (TColStd_Array1OfReal &) –
  • VFlatKnots (TColStd_Array1OfReal &) –
  • UNewDegree (Standard_Integer) –
  • VNewDegree (Standard_Integer) –
  • NewNumerator (TColgp_Array2OfPnt) –
  • NewDenominator (TColStd_Array2OfReal &) –
  • Status (Standard_Integer &) –
Return type:

void

static GetPoles(*args)
  • Get from FP the coordinates of the poles.
Parameters:
  • FP (TColStd_Array1OfReal &) –
  • Poles (TColgp_Array2OfPnt) –
  • UDirection (bool) –
Return type:

void

  • Get from FP the coordinates of the poles.
Parameters:
  • FP (TColStd_Array1OfReal &) –
  • Poles (TColgp_Array2OfPnt) –
  • Weights (TColStd_Array2OfReal &) –
  • UDirection (bool) –
Return type:

void

static HomogeneousD0(*args)
  • Makes an homogeneous evaluation of Poles and Weights any and returns in P the Numerator value and in W the Denominator value if Weights are present otherwise returns 1.0e0
Parameters:
  • U (float) –
  • V (float) –
  • UIndex (Standard_Integer) –
  • VIndex (Standard_Integer) –
  • Poles (TColgp_Array2OfPnt) –
  • Weights (TColStd_Array2OfReal &) –
  • UKnots (TColStd_Array1OfReal &) –
  • VKnots (TColStd_Array1OfReal &) –
  • UMults (TColStd_Array1OfInteger &) –
  • VMults (TColStd_Array1OfInteger &) –
  • UDegree (Standard_Integer) –
  • VDegree (Standard_Integer) –
  • URat (bool) –
  • VRat (bool) –
  • UPer (bool) –
  • VPer (bool) –
  • W (float &) –
  • P (gp_Pnt) –
Return type:

void

static HomogeneousD1(*args)
  • Makes an homogeneous evaluation of Poles and Weights any and returns in P the Numerator value and in W the Denominator value if Weights are present otherwise returns 1.0e0
Parameters:
  • U (float) –
  • V (float) –
  • UIndex (Standard_Integer) –
  • VIndex (Standard_Integer) –
  • Poles (TColgp_Array2OfPnt) –
  • Weights (TColStd_Array2OfReal &) –
  • UKnots (TColStd_Array1OfReal &) –
  • VKnots (TColStd_Array1OfReal &) –
  • UMults (TColStd_Array1OfInteger &) –
  • VMults (TColStd_Array1OfInteger &) –
  • UDegree (Standard_Integer) –
  • VDegree (Standard_Integer) –
  • URat (bool) –
  • VRat (bool) –
  • UPer (bool) –
  • VPer (bool) –
  • N (gp_Pnt) –
  • Nu (gp_Vec) –
  • Nv (gp_Vec) –
  • D (float &) –
  • Du (float &) –
  • Dv (float &) –
Return type:

void

static IncreaseDegree(*args)
Parameters:
  • UDirection (bool) –
  • Degree (Standard_Integer) –
  • NewDegree (Standard_Integer) –
  • Periodic (bool) –
  • Poles (TColgp_Array2OfPnt) –
  • Weights (TColStd_Array2OfReal &) –
  • Knots (TColStd_Array1OfReal &) –
  • Mults (TColStd_Array1OfInteger &) –
  • NewPoles (TColgp_Array2OfPnt) –
  • NewWeights (TColStd_Array2OfReal &) –
  • NewKnots (TColStd_Array1OfReal &) –
  • NewMults (TColStd_Array1OfInteger &) –
Return type:

void

static InsertKnots(*args)
Parameters:
  • UDirection (bool) –
  • Degree (Standard_Integer) –
  • Periodic (bool) –
  • Poles (TColgp_Array2OfPnt) –
  • Weights (TColStd_Array2OfReal &) –
  • Knots (TColStd_Array1OfReal &) –
  • Mults (TColStd_Array1OfInteger &) –
  • AddKnots (TColStd_Array1OfReal &) –
  • AddMults (TColStd_Array1OfInteger &) –
  • NewPoles (TColgp_Array2OfPnt) –
  • NewWeights (TColStd_Array2OfReal &) –
  • NewKnots (TColStd_Array1OfReal &) –
  • NewMults (TColStd_Array1OfInteger &) –
  • Epsilon (float) –
  • Add (bool) – default value is Standard_True
  • UDirection
  • Degree
  • Periodic
  • Poles
  • Weights
  • Knots
  • Mults
  • AddKnots
  • AddMults
  • NewPoles
  • NewWeights
  • NewKnots
  • NewMults
  • Epsilon
  • Add – default value is Standard_True
Return type:

void

Return type:

void

static Interpolate(*args)
  • Performs the interpolation of the data points given in the Poles array in the form [1,...,RL][1,...,RC][1...PolesDimension] . The ColLength CL and the Length of UParameters must be the same. The length of VFlatKnots is VDegree + CL + 1. The RowLength RL and the Length of VParameters must be the same. The length of VFlatKnots is Degree + RL + 1. Warning: the method used to do that interpolation is gauss elimination WITHOUT pivoting. Thus if the diagonal is not dominant there is no guarantee that the algorithm will work. Nevertheless for Cubic interpolation at knots or interpolation at Scheonberg points the method will work. The InversionProblem will report 0 if there was no problem else it will give the index of the faulty pivot
Parameters:
  • UDegree (Standard_Integer) –
  • VDegree (Standard_Integer) –
  • UFlatKnots (TColStd_Array1OfReal &) –
  • VFlatKnots (TColStd_Array1OfReal &) –
  • UParameters (TColStd_Array1OfReal &) –
  • VParameters (TColStd_Array1OfReal &) –
  • Poles (TColgp_Array2OfPnt) –
  • Weights (TColStd_Array2OfReal &) –
  • InversionProblem (Standard_Integer &) –
Return type:

void

  • Performs the interpolation of the data points given in the Poles array. The ColLength CL and the Length of UParameters must be the same. The length of VFlatKnots is VDegree + CL + 1. The RowLength RL and the Length of VParameters must be the same. The length of VFlatKnots is Degree + RL + 1. Warning: the method used to do that interpolation is gauss elimination WITHOUT pivoting. Thus if the diagonal is not dominant there is no guarantee that the algorithm will work. Nevertheless for Cubic interpolation at knots or interpolation at Scheonberg points the method will work. The InversionProblem will report 0 if there was no problem else it will give the index of the faulty pivot
Parameters:
  • UDegree (Standard_Integer) –
  • VDegree (Standard_Integer) –
  • UFlatKnots (TColStd_Array1OfReal &) –
  • VFlatKnots (TColStd_Array1OfReal &) –
  • UParameters (TColStd_Array1OfReal &) –
  • VParameters (TColStd_Array1OfReal &) –
  • Poles (TColgp_Array2OfPnt) –
  • InversionProblem (Standard_Integer &) –
Return type:

void

static IsRational(*args)
  • Returns False if all the weights of the array <Weights> in the area [I1,I2] * [J1,J2] are identic. Epsilon is used for comparing weights. If Epsilon is 0. the Epsilon of the first weight is used.
Parameters:
  • Weights (TColStd_Array2OfReal &) –
  • I1 (Standard_Integer) –
  • I2 (Standard_Integer) –
  • J1 (Standard_Integer) –
  • J2 (Standard_Integer) –
  • Epsilon (float) – default value is 0.0
Return type:

bool

  • Returns False if all the weights of the array <Weights> in the area [I1,I2] * [J1,J2] are identic. Epsilon is used for comparing weights. If Epsilon is 0. the Epsilon of the first weight is used.
Parameters:
  • Weights (TColStd_Array2OfReal &) –
  • I1 (Standard_Integer) –
  • I2 (Standard_Integer) –
  • J1 (Standard_Integer) –
  • J2 (Standard_Integer) –
  • Epsilon (float) – default value is 0.0
Return type:

bool

static Iso(*args)
  • Computes the poles and weights of an isoparametric curve at parameter <Param> (UIso if <IsU> is True, VIso else).
Parameters:
  • Param (float) –
  • IsU (bool) –
  • Poles (TColgp_Array2OfPnt) –
  • Weights (TColStd_Array2OfReal &) –
  • Knots (TColStd_Array1OfReal &) –
  • Mults (TColStd_Array1OfInteger &) –
  • Degree (Standard_Integer) –
  • Periodic (bool) –
  • CPoles (TColgp_Array1OfPnt) –
  • CWeights (TColStd_Array1OfReal &) –
Return type:

void

static MovePoint(*args)
  • Find the new poles which allows an old point (with a given u,v as parameters) to reach a new position UIndex1,UIndex2 indicate the range of poles we can move for U (1, UNbPoles-1) or (2, UNbPoles) -> no constraint for one side in U (2, UNbPoles-1) -> the ends are enforced for U don’t enter (1,NbPoles) and (1,VNbPoles) -> error: rigid move if problem in BSplineBasis calculation, no change for the curve and UFirstIndex, VLastIndex = 0 VFirstIndex, VLastIndex = 0
Parameters:
  • U (float) –
  • V (float) –
  • Displ (gp_Vec) –
  • UIndex1 (Standard_Integer) –
  • UIndex2 (Standard_Integer) –
  • VIndex1 (Standard_Integer) –
  • VIndex2 (Standard_Integer) –
  • UDegree (Standard_Integer) –
  • VDegree (Standard_Integer) –
  • Rational (bool) –
  • Poles (TColgp_Array2OfPnt) –
  • Weights (TColStd_Array2OfReal &) –
  • UFlatKnots (TColStd_Array1OfReal &) –
  • VFlatKnots (TColStd_Array1OfReal &) –
  • UFirstIndex (Standard_Integer &) –
  • ULastIndex (Standard_Integer &) –
  • VFirstIndex (Standard_Integer &) –
  • VLastIndex (Standard_Integer &) –
  • NewPoles (TColgp_Array2OfPnt) –
Return type:

void

static NoWeights()
  • Used as argument for a non rational curve.
Return type:TColStd_Array2OfReal
static PolesCoefficients(*args)
  • Warning! To be used for BezierSurfaces ONLY!!!
Parameters:
  • Poles (TColgp_Array2OfPnt) –
  • CachePoles (TColgp_Array2OfPnt) –
Return type:

void

  • Encapsulation of BuildCache to perform the evaluation of the Taylor expansion for beziersurfaces at parameters 0.,0.; Warning: To be used for BezierSurfaces ONLY!!!
Parameters:
  • Poles (TColgp_Array2OfPnt) –
  • Weights (TColStd_Array2OfReal &) –
  • CachePoles (TColgp_Array2OfPnt) –
  • CacheWeights (TColStd_Array2OfReal &) –
Return type:

void

static RationalDerivative(*args)
  • this is a one dimensional function typedef void (*EvaluatorFunction) ( Standard_Integer // Derivative Request Standard_Real * // StartEnd[2][2] // [0] = U // [1] = V // [0] = start // [1] = end Standard_Real // UParameter Standard_Real // VParamerer Standard_Real & // Result Standard_Integer &) ;// Error Code serves to multiply a given vectorial BSpline by a function Computes the derivatives of a ratio of two-variables functions x(u,v) / w(u,v) at orders <N,M>, x(u,v) is a vector in dimension <3>. <Ders> is an array containing the values of the input derivatives from 0 to Min(<N>,<UDeg>), 0 to Min(<M>,<VDeg>). For orders higher than <UDeg,VDeg> the input derivatives are assumed to be 0. The <Ders> is a 2d array and the dimension of the lines is always (<VDeg>+1) * (<3>+1), even if <N> is smaller than <Udeg> (the derivatives higher than <N> are not used). Content of <Ders> : x(i,j)[k] means : the composant k of x derivated (i) times in u and (j) times in v. ... First line ... x[1],x[2],...,x[3],w x(0,1)[1],...,x(0,1)[3],w(1,0) ... x(0,VDeg)[1],...,x(0,VDeg)[3],w(0,VDeg) ... Then second line ... x(1,0)[1],...,x(1,0)[3],w(1,0) x(1,1)[1],...,x(1,1)[3],w(1,1) ... x(1,VDeg)[1],...,x(1,VDeg)[3],w(1,VDeg) ... ... Last line ... x(UDeg,0)[1],...,x(UDeg,0)[3],w(UDeg,0) x(UDeg,1)[1],...,x(UDeg,1)[3],w(UDeg,1) ... x(Udeg,VDeg)[1],...,x(UDeg,VDeg)[3],w(Udeg,VDeg) If <All> is false, only the derivative at order <N,M> is computed. <RDers> is an array of length 3 which will contain the result : x(1)/w , x(2)/w , ... derivated <N> <M> times If <All> is true multiples derivatives are computed. All the derivatives (i,j) with 0 <= i+j <= Max(N,M) are computed. <RDers> is an array of length 3 * (<N>+1) * (<M>+1) which will contains : x(1)/w , x(2)/w , ... x(1)/w , x(2)/w , ... derivated <0,1> times x(1)/w , x(2)/w , ... derivated <0,2> times ... x(1)/w , x(2)/w , ... derivated <0,N> times x(1)/w , x(2)/w , ... derivated <1,0> times x(1)/w , x(2)/w , ... derivated <1,1> times ... x(1)/w , x(2)/w , ... derivated <1,N> times x(1)/w , x(2)/w , ... derivated <N,0> times .... Warning: <RDers> must be dimensionned properly.
Parameters:
  • UDeg (Standard_Integer) –
  • VDeg (Standard_Integer) –
  • N (Standard_Integer) –
  • M (Standard_Integer) –
  • Ders (float &) –
  • RDers (float &) –
  • All (bool) – default value is Standard_True
Return type:

void

  • this is a one dimensional function typedef void (*EvaluatorFunction) ( Standard_Integer // Derivative Request Standard_Real * // StartEnd[2][2] // [0] = U // [1] = V // [0] = start // [1] = end Standard_Real // UParameter Standard_Real // VParamerer Standard_Real & // Result Standard_Integer &) ;// Error Code serves to multiply a given vectorial BSpline by a function Computes the derivatives of a ratio of two-variables functions x(u,v) / w(u,v) at orders <N,M>, x(u,v) is a vector in dimension <3>. <Ders> is an array containing the values of the input derivatives from 0 to Min(<N>,<UDeg>), 0 to Min(<M>,<VDeg>). For orders higher than <UDeg,VDeg> the input derivatives are assumed to be 0. The <Ders> is a 2d array and the dimension of the lines is always (<VDeg>+1) * (<3>+1), even if <N> is smaller than <Udeg> (the derivatives higher than <N> are not used). Content of <Ders> : x(i,j)[k] means : the composant k of x derivated (i) times in u and (j) times in v. ... First line ... x[1],x[2],...,x[3],w x(0,1)[1],...,x(0,1)[3],w(1,0) ... x(0,VDeg)[1],...,x(0,VDeg)[3],w(0,VDeg) ... Then second line ... x(1,0)[1],...,x(1,0)[3],w(1,0) x(1,1)[1],...,x(1,1)[3],w(1,1) ... x(1,VDeg)[1],...,x(1,VDeg)[3],w(1,VDeg) ... ... Last line ... x(UDeg,0)[1],...,x(UDeg,0)[3],w(UDeg,0) x(UDeg,1)[1],...,x(UDeg,1)[3],w(UDeg,1) ... x(Udeg,VDeg)[1],...,x(UDeg,VDeg)[3],w(Udeg,VDeg) If <All> is false, only the derivative at order <N,M> is computed. <RDers> is an array of length 3 which will contain the result : x(1)/w , x(2)/w , ... derivated <N> <M> times If <All> is true multiples derivatives are computed. All the derivatives (i,j) with 0 <= i+j <= Max(N,M) are computed. <RDers> is an array of length 3 * (<N>+1) * (<M>+1) which will contains : x(1)/w , x(2)/w , ... x(1)/w , x(2)/w , ... derivated <0,1> times x(1)/w , x(2)/w , ... derivated <0,2> times ... x(1)/w , x(2)/w , ... derivated <0,N> times x(1)/w , x(2)/w , ... derivated <1,0> times x(1)/w , x(2)/w , ... derivated <1,1> times ... x(1)/w , x(2)/w , ... derivated <1,N> times x(1)/w , x(2)/w , ... derivated <N,0> times .... Warning: <RDers> must be dimensionned properly.
Parameters:
  • UDeg (Standard_Integer) –
  • VDeg (Standard_Integer) –
  • N (Standard_Integer) –
  • M (Standard_Integer) –
  • Ders (float &) –
  • RDers (float &) –
  • All (bool) – default value is Standard_True
Return type:

void

static RemoveKnot(*args)
Parameters:
  • UDirection (bool) –
  • Index (Standard_Integer) –
  • Mult (Standard_Integer) –
  • Degree (Standard_Integer) –
  • Periodic (bool) –
  • Poles (TColgp_Array2OfPnt) –
  • Weights (TColStd_Array2OfReal &) –
  • Knots (TColStd_Array1OfReal &) –
  • Mults (TColStd_Array1OfInteger &) –
  • NewPoles (TColgp_Array2OfPnt) –
  • NewWeights (TColStd_Array2OfReal &) –
  • NewKnots (TColStd_Array1OfReal &) –
  • NewMults (TColStd_Array1OfInteger &) –
  • Tolerance (float) –
Return type:

bool

static Resolution(*args)
  • Given a tolerance in 3D space returns two tolerances, one in U one in V such that for all (u1,v1) and (u0,v0) in the domain of the surface f(u,v) we have : | u1 - u0 | < UTolerance and | v1 - v0 | < VTolerance we have |f (u1,v1) - f (u0,v0)| < Tolerance3D
Parameters:
  • Poles (TColgp_Array2OfPnt) –
  • Weights (TColStd_Array2OfReal &) –
  • UKnots (TColStd_Array1OfReal &) –
  • VKnots (TColStd_Array1OfReal &) –
  • UMults (TColStd_Array1OfInteger &) –
  • VMults (TColStd_Array1OfInteger &) –
  • UDegree (Standard_Integer) –
  • VDegree (Standard_Integer) –
  • URat (bool) –
  • VRat (bool) –
  • UPer (bool) –
  • VPer (bool) –
  • Tolerance3D (float) –
  • UTolerance (float &) –
  • VTolerance (float &) –
Return type:

void

static Reverse(*args)
  • Reverses the array of poles. Last is the Index of the new first Row( Col) of Poles. On a non periodic surface Last is Poles.Upper(). On a periodic curve last is (number of flat knots - degree - 1) or (sum of multiplicities(but for the last) + degree - 1)
Parameters:
  • Poles (TColgp_Array2OfPnt) –
  • Last (Standard_Integer) –
  • UDirection (bool) –
Return type:

void

  • Reverses the array of weights.
Parameters:
  • Weights (TColStd_Array2OfReal &) –
  • Last (Standard_Integer) –
  • UDirection (bool) –
Return type:

void

static SetPoles(*args)
  • Copy in FP the coordinates of the poles.
Parameters:
  • Poles (TColgp_Array2OfPnt) –
  • FP (TColStd_Array1OfReal &) –
  • UDirection (bool) –
Return type:

void

  • Copy in FP the coordinates of the poles.
Parameters:
  • Poles (TColgp_Array2OfPnt) –
  • Weights (TColStd_Array2OfReal &) –
  • FP (TColStd_Array1OfReal &) –
  • UDirection (bool) –
Return type:

void

static Unperiodize(*args)
Parameters:
  • UDirection (bool) –
  • Degree (Standard_Integer) –
  • Mults (TColStd_Array1OfInteger &) –
  • Knots (TColStd_Array1OfReal &) –
  • Poles (TColgp_Array2OfPnt) –
  • Weights (TColStd_Array2OfReal &) –
  • NewMults (TColStd_Array1OfInteger &) –
  • NewKnots (TColStd_Array1OfReal &) –
  • NewPoles (TColgp_Array2OfPnt) –
  • NewWeights (TColStd_Array2OfReal &) –
Return type:

void

thisown

The membership flag

OCC.BSplSLib.bsplslib_BuildCache(*args)
  • Perform the evaluation of the Taylor expansion of the Bspline normalized between 0 and 1. If rational computes the homogeneous Taylor expension for the numerator and stores it in CachePoles
Parameters:
  • U (float) –
  • V (float) –
  • USpanDomain (float) –
  • VSpanDomain (float) –
  • UPeriodicFlag (bool) –
  • VPeriodicFlag (bool) –
  • UDegree (Standard_Integer) –
  • VDegree (Standard_Integer) –
  • UIndex (Standard_Integer) –
  • VIndex (Standard_Integer) –
  • UFlatKnots (TColStd_Array1OfReal &) –
  • VFlatKnots (TColStd_Array1OfReal &) –
  • Poles (TColgp_Array2OfPnt) –
  • Weights (TColStd_Array2OfReal &) –
  • CachePoles (TColgp_Array2OfPnt) –
  • CacheWeights (TColStd_Array2OfReal &) –
Return type:

void

OCC.BSplSLib.bsplslib_CacheD0(*args)
  • Perform the evaluation of the of the cache the parameter must be normalized between the 0 and 1 for the span. The Cache must be valid when calling this routine. Geom Package will insure that. and then multiplies by the weights this just evaluates the current point the CacheParameter is where the Cache was constructed the SpanLength is to normalize the polynomial in the cache to avoid bad conditioning effects
Parameters:
  • U (float) –
  • V (float) –
  • UDegree (Standard_Integer) –
  • VDegree (Standard_Integer) –
  • UCacheParameter (float) –
  • VCacheParameter (float) –
  • USpanLenght (float) –
  • VSpanLength (float) –
  • Poles (TColgp_Array2OfPnt) –
  • Weights (TColStd_Array2OfReal &) –
  • Point (gp_Pnt) –
Return type:

void

OCC.BSplSLib.bsplslib_CacheD1(*args)
  • Perform the evaluation of the of the cache the parameter must be normalized between the 0 and 1 for the span. The Cache must be valid when calling this routine. Geom Package will insure that. and then multiplies by the weights this just evaluates the current point the CacheParameter is where the Cache was constructed the SpanLength is to normalize the polynomial in the cache to avoid bad conditioning effects
Parameters:
  • U (float) –
  • V (float) –
  • UDegree (Standard_Integer) –
  • VDegree (Standard_Integer) –
  • UCacheParameter (float) –
  • VCacheParameter (float) –
  • USpanLenght (float) –
  • VSpanLength (float) –
  • Poles (TColgp_Array2OfPnt) –
  • Weights (TColStd_Array2OfReal &) –
  • Point (gp_Pnt) –
  • VecU (gp_Vec) –
  • VecV (gp_Vec) –
Return type:

void

OCC.BSplSLib.bsplslib_CacheD2(*args)
  • Perform the evaluation of the of the cache the parameter must be normalized between the 0 and 1 for the span. The Cache must be valid when calling this routine. Geom Package will insure that. and then multiplies by the weights this just evaluates the current point the CacheParameter is where the Cache was constructed the SpanLength is to normalize the polynomial in the cache to avoid bad conditioning effects
Parameters:
  • U (float) –
  • V (float) –
  • UDegree (Standard_Integer) –
  • VDegree (Standard_Integer) –
  • UCacheParameter (float) –
  • VCacheParameter (float) –
  • USpanLenght (float) –
  • VSpanLength (float) –
  • Poles (TColgp_Array2OfPnt) –
  • Weights (TColStd_Array2OfReal &) –
  • Point (gp_Pnt) –
  • VecU (gp_Vec) –
  • VecV (gp_Vec) –
  • VecUU (gp_Vec) –
  • VecUV (gp_Vec) –
  • VecVV (gp_Vec) –
Return type:

void

OCC.BSplSLib.bsplslib_CoefsD0(*args)
  • Calls CacheD0 for Bezier Surfaces Arrays computed with the method PolesCoefficients. Warning: To be used for BezierSurfaces ONLY!!!
Parameters:
  • U (float) –
  • V (float) –
  • Poles (TColgp_Array2OfPnt) –
  • Weights (TColStd_Array2OfReal &) –
  • Point (gp_Pnt) –
Return type:

void

OCC.BSplSLib.bsplslib_CoefsD1(*args)
  • Calls CacheD0 for Bezier Surfaces Arrays computed with the method PolesCoefficients. Warning: To be used for BezierSurfaces ONLY!!!
Parameters:
  • U (float) –
  • V (float) –
  • Poles (TColgp_Array2OfPnt) –
  • Weights (TColStd_Array2OfReal &) –
  • Point (gp_Pnt) –
  • VecU (gp_Vec) –
  • VecV (gp_Vec) –
Return type:

void

OCC.BSplSLib.bsplslib_CoefsD2(*args)
  • Calls CacheD0 for Bezier Surfaces Arrays computed with the method PolesCoefficients. Warning: To be used for BezierSurfaces ONLY!!!
Parameters:
  • U (float) –
  • V (float) –
  • Poles (TColgp_Array2OfPnt) –
  • Weights (TColStd_Array2OfReal &) –
  • Point (gp_Pnt) –
  • VecU (gp_Vec) –
  • VecV (gp_Vec) –
  • VecUU (gp_Vec) –
  • VecUV (gp_Vec) –
  • VecVV (gp_Vec) –
Return type:

void

OCC.BSplSLib.bsplslib_D0(*args)
Parameters:
  • U (float) –
  • V (float) –
  • UIndex (Standard_Integer) –
  • VIndex (Standard_Integer) –
  • Poles (TColgp_Array2OfPnt) –
  • Weights (TColStd_Array2OfReal &) –
  • UKnots (TColStd_Array1OfReal &) –
  • VKnots (TColStd_Array1OfReal &) –
  • UMults (TColStd_Array1OfInteger &) –
  • VMults (TColStd_Array1OfInteger &) –
  • UDegree (Standard_Integer) –
  • VDegree (Standard_Integer) –
  • URat (bool) –
  • VRat (bool) –
  • UPer (bool) –
  • VPer (bool) –
  • P (gp_Pnt) –
Return type:

void

OCC.BSplSLib.bsplslib_D1(*args)
Parameters:
  • U (float) –
  • V (float) –
  • UIndex (Standard_Integer) –
  • VIndex (Standard_Integer) –
  • Poles (TColgp_Array2OfPnt) –
  • Weights (TColStd_Array2OfReal &) –
  • UKnots (TColStd_Array1OfReal &) –
  • VKnots (TColStd_Array1OfReal &) –
  • UMults (TColStd_Array1OfInteger &) –
  • VMults (TColStd_Array1OfInteger &) –
  • Degree (Standard_Integer) –
  • VDegree (Standard_Integer) –
  • URat (bool) –
  • VRat (bool) –
  • UPer (bool) –
  • VPer (bool) –
  • P (gp_Pnt) –
  • Vu (gp_Vec) –
  • Vv (gp_Vec) –
Return type:

void

OCC.BSplSLib.bsplslib_D2(*args)
Parameters:
  • U (float) –
  • V (float) –
  • UIndex (Standard_Integer) –
  • VIndex (Standard_Integer) –
  • Poles (TColgp_Array2OfPnt) –
  • Weights (TColStd_Array2OfReal &) –
  • UKnots (TColStd_Array1OfReal &) –
  • VKnots (TColStd_Array1OfReal &) –
  • UMults (TColStd_Array1OfInteger &) –
  • VMults (TColStd_Array1OfInteger &) –
  • UDegree (Standard_Integer) –
  • VDegree (Standard_Integer) –
  • URat (bool) –
  • VRat (bool) –
  • UPer (bool) –
  • VPer (bool) –
  • P (gp_Pnt) –
  • Vu (gp_Vec) –
  • Vv (gp_Vec) –
  • Vuu (gp_Vec) –
  • Vvv (gp_Vec) –
  • Vuv (gp_Vec) –
Return type:

void

OCC.BSplSLib.bsplslib_D3(*args)
Parameters:
  • U (float) –
  • V (float) –
  • UIndex (Standard_Integer) –
  • VIndex (Standard_Integer) –
  • Poles (TColgp_Array2OfPnt) –
  • Weights (TColStd_Array2OfReal &) –
  • UKnots (TColStd_Array1OfReal &) –
  • VKnots (TColStd_Array1OfReal &) –
  • UMults (TColStd_Array1OfInteger &) –
  • VMults (TColStd_Array1OfInteger &) –
  • UDegree (Standard_Integer) –
  • VDegree (Standard_Integer) –
  • URat (bool) –
  • VRat (bool) –
  • UPer (bool) –
  • VPer (bool) –
  • P (gp_Pnt) –
  • Vu (gp_Vec) –
  • Vv (gp_Vec) –
  • Vuu (gp_Vec) –
  • Vvv (gp_Vec) –
  • Vuv (gp_Vec) –
  • Vuuu (gp_Vec) –
  • Vvvv (gp_Vec) –
  • Vuuv (gp_Vec) –
  • Vuvv (gp_Vec) –
Return type:

void

OCC.BSplSLib.bsplslib_DN(*args)
Parameters:
  • U (float) –
  • V (float) –
  • Nu (Standard_Integer) –
  • Nv (Standard_Integer) –
  • UIndex (Standard_Integer) –
  • VIndex (Standard_Integer) –
  • Poles (TColgp_Array2OfPnt) –
  • Weights (TColStd_Array2OfReal &) –
  • UKnots (TColStd_Array1OfReal &) –
  • VKnots (TColStd_Array1OfReal &) –
  • UMults (TColStd_Array1OfInteger &) –
  • VMults (TColStd_Array1OfInteger &) –
  • UDegree (Standard_Integer) –
  • VDegree (Standard_Integer) –
  • URat (bool) –
  • VRat (bool) –
  • UPer (bool) –
  • VPer (bool) –
  • Vn (gp_Vec) –
Return type:

void

OCC.BSplSLib.bsplslib_FunctionMultiply(*args)
  • this will multiply a given BSpline numerator N(u,v) and denominator D(u,v) defined by its U/VBSplineDegree and U/VBSplineKnots, and U/VMults. Its Poles and Weights are arrays which are coded as array2 of the form [1..UNumPoles][1..VNumPoles] by a function a(u,v) which is assumed to satisfy the following : 1. a(u,v) * N(u,v) and a(u,v) * D(u,v) is a polynomial BSpline that can be expressed exactly as a BSpline of degree U/VNewDegree on the knots U/VFlatKnots 2. the range of a(u,v) is the same as the range of N(u,v) or D(u,v) —Warning: it is the caller’s responsability to insure that conditions 1. and 2. above are satisfied : no check whatsoever is made in this method – Status will return 0 if OK else it will return the pivot index – of the matrix that was inverted to compute the multiplied – BSpline : the method used is interpolation at Schoenenberg – points of a(u,v)* N(u,v) and a(u,v) * D(u,v) Status will return 0 if OK else it will return the pivot index of the matrix that was inverted to compute the multiplied BSpline : the method used is interpolation at Schoenenberg points of a(u,v)*F(u,v) –
Parameters:
  • Function (BSplSLib_EvaluatorFunction &) –
  • UBSplineDegree (Standard_Integer) –
  • VBSplineDegree (Standard_Integer) –
  • UBSplineKnots (TColStd_Array1OfReal &) –
  • VBSplineKnots (TColStd_Array1OfReal &) –
  • UMults (TColStd_Array1OfInteger &) –
  • VMults (TColStd_Array1OfInteger &) –
  • Poles (TColgp_Array2OfPnt) –
  • Weights (TColStd_Array2OfReal &) –
  • UFlatKnots (TColStd_Array1OfReal &) –
  • VFlatKnots (TColStd_Array1OfReal &) –
  • UNewDegree (Standard_Integer) –
  • VNewDegree (Standard_Integer) –
  • NewNumerator (TColgp_Array2OfPnt) –
  • NewDenominator (TColStd_Array2OfReal &) –
  • Status (Standard_Integer &) –
Return type:

void

OCC.BSplSLib.bsplslib_GetPoles(*args)
  • Get from FP the coordinates of the poles.
Parameters:
  • FP (TColStd_Array1OfReal &) –
  • Poles (TColgp_Array2OfPnt) –
  • UDirection (bool) –
Return type:

void

  • Get from FP the coordinates of the poles.
Parameters:
  • FP (TColStd_Array1OfReal &) –
  • Poles (TColgp_Array2OfPnt) –
  • Weights (TColStd_Array2OfReal &) –
  • UDirection (bool) –
Return type:

void

OCC.BSplSLib.bsplslib_HomogeneousD0(*args)
  • Makes an homogeneous evaluation of Poles and Weights any and returns in P the Numerator value and in W the Denominator value if Weights are present otherwise returns 1.0e0
Parameters:
  • U (float) –
  • V (float) –
  • UIndex (Standard_Integer) –
  • VIndex (Standard_Integer) –
  • Poles (TColgp_Array2OfPnt) –
  • Weights (TColStd_Array2OfReal &) –
  • UKnots (TColStd_Array1OfReal &) –
  • VKnots (TColStd_Array1OfReal &) –
  • UMults (TColStd_Array1OfInteger &) –
  • VMults (TColStd_Array1OfInteger &) –
  • UDegree (Standard_Integer) –
  • VDegree (Standard_Integer) –
  • URat (bool) –
  • VRat (bool) –
  • UPer (bool) –
  • VPer (bool) –
  • W (float &) –
  • P (gp_Pnt) –
Return type:

void

OCC.BSplSLib.bsplslib_HomogeneousD1(*args)
  • Makes an homogeneous evaluation of Poles and Weights any and returns in P the Numerator value and in W the Denominator value if Weights are present otherwise returns 1.0e0
Parameters:
  • U (float) –
  • V (float) –
  • UIndex (Standard_Integer) –
  • VIndex (Standard_Integer) –
  • Poles (TColgp_Array2OfPnt) –
  • Weights (TColStd_Array2OfReal &) –
  • UKnots (TColStd_Array1OfReal &) –
  • VKnots (TColStd_Array1OfReal &) –
  • UMults (TColStd_Array1OfInteger &) –
  • VMults (TColStd_Array1OfInteger &) –
  • UDegree (Standard_Integer) –
  • VDegree (Standard_Integer) –
  • URat (bool) –
  • VRat (bool) –
  • UPer (bool) –
  • VPer (bool) –
  • N (gp_Pnt) –
  • Nu (gp_Vec) –
  • Nv (gp_Vec) –
  • D (float &) –
  • Du (float &) –
  • Dv (float &) –
Return type:

void

OCC.BSplSLib.bsplslib_IncreaseDegree(*args)
Parameters:
  • UDirection (bool) –
  • Degree (Standard_Integer) –
  • NewDegree (Standard_Integer) –
  • Periodic (bool) –
  • Poles (TColgp_Array2OfPnt) –
  • Weights (TColStd_Array2OfReal &) –
  • Knots (TColStd_Array1OfReal &) –
  • Mults (TColStd_Array1OfInteger &) –
  • NewPoles (TColgp_Array2OfPnt) –
  • NewWeights (TColStd_Array2OfReal &) –
  • NewKnots (TColStd_Array1OfReal &) –
  • NewMults (TColStd_Array1OfInteger &) –
Return type:

void

OCC.BSplSLib.bsplslib_InsertKnots(*args)
Parameters:
  • UDirection (bool) –
  • Degree (Standard_Integer) –
  • Periodic (bool) –
  • Poles (TColgp_Array2OfPnt) –
  • Weights (TColStd_Array2OfReal &) –
  • Knots (TColStd_Array1OfReal &) –
  • Mults (TColStd_Array1OfInteger &) –
  • AddKnots (TColStd_Array1OfReal &) –
  • AddMults (TColStd_Array1OfInteger &) –
  • NewPoles (TColgp_Array2OfPnt) –
  • NewWeights (TColStd_Array2OfReal &) –
  • NewKnots (TColStd_Array1OfReal &) –
  • NewMults (TColStd_Array1OfInteger &) –
  • Epsilon (float) –
  • Add (bool) – default value is Standard_True
  • UDirection
  • Degree
  • Periodic
  • Poles
  • Weights
  • Knots
  • Mults
  • AddKnots
  • AddMults
  • NewPoles
  • NewWeights
  • NewKnots
  • NewMults
  • Epsilon
  • Add – default value is Standard_True
Return type:

void

Return type:

void

OCC.BSplSLib.bsplslib_Interpolate(*args)
  • Performs the interpolation of the data points given in the Poles array in the form [1,...,RL][1,...,RC][1...PolesDimension] . The ColLength CL and the Length of UParameters must be the same. The length of VFlatKnots is VDegree + CL + 1. The RowLength RL and the Length of VParameters must be the same. The length of VFlatKnots is Degree + RL + 1. Warning: the method used to do that interpolation is gauss elimination WITHOUT pivoting. Thus if the diagonal is not dominant there is no guarantee that the algorithm will work. Nevertheless for Cubic interpolation at knots or interpolation at Scheonberg points the method will work. The InversionProblem will report 0 if there was no problem else it will give the index of the faulty pivot
Parameters:
  • UDegree (Standard_Integer) –
  • VDegree (Standard_Integer) –
  • UFlatKnots (TColStd_Array1OfReal &) –
  • VFlatKnots (TColStd_Array1OfReal &) –
  • UParameters (TColStd_Array1OfReal &) –
  • VParameters (TColStd_Array1OfReal &) –
  • Poles (TColgp_Array2OfPnt) –
  • Weights (TColStd_Array2OfReal &) –
  • InversionProblem (Standard_Integer &) –
Return type:

void

  • Performs the interpolation of the data points given in the Poles array. The ColLength CL and the Length of UParameters must be the same. The length of VFlatKnots is VDegree + CL + 1. The RowLength RL and the Length of VParameters must be the same. The length of VFlatKnots is Degree + RL + 1. Warning: the method used to do that interpolation is gauss elimination WITHOUT pivoting. Thus if the diagonal is not dominant there is no guarantee that the algorithm will work. Nevertheless for Cubic interpolation at knots or interpolation at Scheonberg points the method will work. The InversionProblem will report 0 if there was no problem else it will give the index of the faulty pivot
Parameters:
  • UDegree (Standard_Integer) –
  • VDegree (Standard_Integer) –
  • UFlatKnots (TColStd_Array1OfReal &) –
  • VFlatKnots (TColStd_Array1OfReal &) –
  • UParameters (TColStd_Array1OfReal &) –
  • VParameters (TColStd_Array1OfReal &) –
  • Poles (TColgp_Array2OfPnt) –
  • InversionProblem (Standard_Integer &) –
Return type:

void

OCC.BSplSLib.bsplslib_IsRational(*args)
  • Returns False if all the weights of the array <Weights> in the area [I1,I2] * [J1,J2] are identic. Epsilon is used for comparing weights. If Epsilon is 0. the Epsilon of the first weight is used.
Parameters:
  • Weights (TColStd_Array2OfReal &) –
  • I1 (Standard_Integer) –
  • I2 (Standard_Integer) –
  • J1 (Standard_Integer) –
  • J2 (Standard_Integer) –
  • Epsilon (float) – default value is 0.0
Return type:

bool

  • Returns False if all the weights of the array <Weights> in the area [I1,I2] * [J1,J2] are identic. Epsilon is used for comparing weights. If Epsilon is 0. the Epsilon of the first weight is used.
Parameters:
  • Weights (TColStd_Array2OfReal &) –
  • I1 (Standard_Integer) –
  • I2 (Standard_Integer) –
  • J1 (Standard_Integer) –
  • J2 (Standard_Integer) –
  • Epsilon (float) – default value is 0.0
Return type:

bool

OCC.BSplSLib.bsplslib_Iso(*args)
  • Computes the poles and weights of an isoparametric curve at parameter <Param> (UIso if <IsU> is True, VIso else).
Parameters:
  • Param (float) –
  • IsU (bool) –
  • Poles (TColgp_Array2OfPnt) –
  • Weights (TColStd_Array2OfReal &) –
  • Knots (TColStd_Array1OfReal &) –
  • Mults (TColStd_Array1OfInteger &) –
  • Degree (Standard_Integer) –
  • Periodic (bool) –
  • CPoles (TColgp_Array1OfPnt) –
  • CWeights (TColStd_Array1OfReal &) –
Return type:

void

OCC.BSplSLib.bsplslib_MovePoint(*args)
  • Find the new poles which allows an old point (with a given u,v as parameters) to reach a new position UIndex1,UIndex2 indicate the range of poles we can move for U (1, UNbPoles-1) or (2, UNbPoles) -> no constraint for one side in U (2, UNbPoles-1) -> the ends are enforced for U don’t enter (1,NbPoles) and (1,VNbPoles) -> error: rigid move if problem in BSplineBasis calculation, no change for the curve and UFirstIndex, VLastIndex = 0 VFirstIndex, VLastIndex = 0
Parameters:
  • U (float) –
  • V (float) –
  • Displ (gp_Vec) –
  • UIndex1 (Standard_Integer) –
  • UIndex2 (Standard_Integer) –
  • VIndex1 (Standard_Integer) –
  • VIndex2 (Standard_Integer) –
  • UDegree (Standard_Integer) –
  • VDegree (Standard_Integer) –
  • Rational (bool) –
  • Poles (TColgp_Array2OfPnt) –
  • Weights (TColStd_Array2OfReal &) –
  • UFlatKnots (TColStd_Array1OfReal &) –
  • VFlatKnots (TColStd_Array1OfReal &) –
  • UFirstIndex (Standard_Integer &) –
  • ULastIndex (Standard_Integer &) –
  • VFirstIndex (Standard_Integer &) –
  • VLastIndex (Standard_Integer &) –
  • NewPoles (TColgp_Array2OfPnt) –
Return type:

void

OCC.BSplSLib.bsplslib_NoWeights()
  • Used as argument for a non rational curve.
Return type:TColStd_Array2OfReal
OCC.BSplSLib.bsplslib_PolesCoefficients(*args)
  • Warning! To be used for BezierSurfaces ONLY!!!
Parameters:
  • Poles (TColgp_Array2OfPnt) –
  • CachePoles (TColgp_Array2OfPnt) –
Return type:

void

  • Encapsulation of BuildCache to perform the evaluation of the Taylor expansion for beziersurfaces at parameters 0.,0.; Warning: To be used for BezierSurfaces ONLY!!!
Parameters:
  • Poles (TColgp_Array2OfPnt) –
  • Weights (TColStd_Array2OfReal &) –
  • CachePoles (TColgp_Array2OfPnt) –
  • CacheWeights (TColStd_Array2OfReal &) –
Return type:

void

OCC.BSplSLib.bsplslib_RationalDerivative(*args)
  • this is a one dimensional function typedef void (*EvaluatorFunction) ( Standard_Integer // Derivative Request Standard_Real * // StartEnd[2][2] // [0] = U // [1] = V // [0] = start // [1] = end Standard_Real // UParameter Standard_Real // VParamerer Standard_Real & // Result Standard_Integer &) ;// Error Code serves to multiply a given vectorial BSpline by a function Computes the derivatives of a ratio of two-variables functions x(u,v) / w(u,v) at orders <N,M>, x(u,v) is a vector in dimension <3>. <Ders> is an array containing the values of the input derivatives from 0 to Min(<N>,<UDeg>), 0 to Min(<M>,<VDeg>). For orders higher than <UDeg,VDeg> the input derivatives are assumed to be 0. The <Ders> is a 2d array and the dimension of the lines is always (<VDeg>+1) * (<3>+1), even if <N> is smaller than <Udeg> (the derivatives higher than <N> are not used). Content of <Ders> : x(i,j)[k] means : the composant k of x derivated (i) times in u and (j) times in v. ... First line ... x[1],x[2],...,x[3],w x(0,1)[1],...,x(0,1)[3],w(1,0) ... x(0,VDeg)[1],...,x(0,VDeg)[3],w(0,VDeg) ... Then second line ... x(1,0)[1],...,x(1,0)[3],w(1,0) x(1,1)[1],...,x(1,1)[3],w(1,1) ... x(1,VDeg)[1],...,x(1,VDeg)[3],w(1,VDeg) ... ... Last line ... x(UDeg,0)[1],...,x(UDeg,0)[3],w(UDeg,0) x(UDeg,1)[1],...,x(UDeg,1)[3],w(UDeg,1) ... x(Udeg,VDeg)[1],...,x(UDeg,VDeg)[3],w(Udeg,VDeg) If <All> is false, only the derivative at order <N,M> is computed. <RDers> is an array of length 3 which will contain the result : x(1)/w , x(2)/w , ... derivated <N> <M> times If <All> is true multiples derivatives are computed. All the derivatives (i,j) with 0 <= i+j <= Max(N,M) are computed. <RDers> is an array of length 3 * (<N>+1) * (<M>+1) which will contains : x(1)/w , x(2)/w , ... x(1)/w , x(2)/w , ... derivated <0,1> times x(1)/w , x(2)/w , ... derivated <0,2> times ... x(1)/w , x(2)/w , ... derivated <0,N> times x(1)/w , x(2)/w , ... derivated <1,0> times x(1)/w , x(2)/w , ... derivated <1,1> times ... x(1)/w , x(2)/w , ... derivated <1,N> times x(1)/w , x(2)/w , ... derivated <N,0> times .... Warning: <RDers> must be dimensionned properly.
Parameters:
  • UDeg (Standard_Integer) –
  • VDeg (Standard_Integer) –
  • N (Standard_Integer) –
  • M (Standard_Integer) –
  • Ders (float &) –
  • RDers (float &) –
  • All (bool) – default value is Standard_True
Return type:

void

  • this is a one dimensional function typedef void (*EvaluatorFunction) ( Standard_Integer // Derivative Request Standard_Real * // StartEnd[2][2] // [0] = U // [1] = V // [0] = start // [1] = end Standard_Real // UParameter Standard_Real // VParamerer Standard_Real & // Result Standard_Integer &) ;// Error Code serves to multiply a given vectorial BSpline by a function Computes the derivatives of a ratio of two-variables functions x(u,v) / w(u,v) at orders <N,M>, x(u,v) is a vector in dimension <3>. <Ders> is an array containing the values of the input derivatives from 0 to Min(<N>,<UDeg>), 0 to Min(<M>,<VDeg>). For orders higher than <UDeg,VDeg> the input derivatives are assumed to be 0. The <Ders> is a 2d array and the dimension of the lines is always (<VDeg>+1) * (<3>+1), even if <N> is smaller than <Udeg> (the derivatives higher than <N> are not used). Content of <Ders> : x(i,j)[k] means : the composant k of x derivated (i) times in u and (j) times in v. ... First line ... x[1],x[2],...,x[3],w x(0,1)[1],...,x(0,1)[3],w(1,0) ... x(0,VDeg)[1],...,x(0,VDeg)[3],w(0,VDeg) ... Then second line ... x(1,0)[1],...,x(1,0)[3],w(1,0) x(1,1)[1],...,x(1,1)[3],w(1,1) ... x(1,VDeg)[1],...,x(1,VDeg)[3],w(1,VDeg) ... ... Last line ... x(UDeg,0)[1],...,x(UDeg,0)[3],w(UDeg,0) x(UDeg,1)[1],...,x(UDeg,1)[3],w(UDeg,1) ... x(Udeg,VDeg)[1],...,x(UDeg,VDeg)[3],w(Udeg,VDeg) If <All> is false, only the derivative at order <N,M> is computed. <RDers> is an array of length 3 which will contain the result : x(1)/w , x(2)/w , ... derivated <N> <M> times If <All> is true multiples derivatives are computed. All the derivatives (i,j) with 0 <= i+j <= Max(N,M) are computed. <RDers> is an array of length 3 * (<N>+1) * (<M>+1) which will contains : x(1)/w , x(2)/w , ... x(1)/w , x(2)/w , ... derivated <0,1> times x(1)/w , x(2)/w , ... derivated <0,2> times ... x(1)/w , x(2)/w , ... derivated <0,N> times x(1)/w , x(2)/w , ... derivated <1,0> times x(1)/w , x(2)/w , ... derivated <1,1> times ... x(1)/w , x(2)/w , ... derivated <1,N> times x(1)/w , x(2)/w , ... derivated <N,0> times .... Warning: <RDers> must be dimensionned properly.
Parameters:
  • UDeg (Standard_Integer) –
  • VDeg (Standard_Integer) –
  • N (Standard_Integer) –
  • M (Standard_Integer) –
  • Ders (float &) –
  • RDers (float &) –
  • All (bool) – default value is Standard_True
Return type:

void

OCC.BSplSLib.bsplslib_RemoveKnot(*args)
Parameters:
  • UDirection (bool) –
  • Index (Standard_Integer) –
  • Mult (Standard_Integer) –
  • Degree (Standard_Integer) –
  • Periodic (bool) –
  • Poles (TColgp_Array2OfPnt) –
  • Weights (TColStd_Array2OfReal &) –
  • Knots (TColStd_Array1OfReal &) –
  • Mults (TColStd_Array1OfInteger &) –
  • NewPoles (TColgp_Array2OfPnt) –
  • NewWeights (TColStd_Array2OfReal &) –
  • NewKnots (TColStd_Array1OfReal &) –
  • NewMults (TColStd_Array1OfInteger &) –
  • Tolerance (float) –
Return type:

bool

OCC.BSplSLib.bsplslib_Resolution(*args)
  • Given a tolerance in 3D space returns two tolerances, one in U one in V such that for all (u1,v1) and (u0,v0) in the domain of the surface f(u,v) we have : | u1 - u0 | < UTolerance and | v1 - v0 | < VTolerance we have |f (u1,v1) - f (u0,v0)| < Tolerance3D
Parameters:
  • Poles (TColgp_Array2OfPnt) –
  • Weights (TColStd_Array2OfReal &) –
  • UKnots (TColStd_Array1OfReal &) –
  • VKnots (TColStd_Array1OfReal &) –
  • UMults (TColStd_Array1OfInteger &) –
  • VMults (TColStd_Array1OfInteger &) –
  • UDegree (Standard_Integer) –
  • VDegree (Standard_Integer) –
  • URat (bool) –
  • VRat (bool) –
  • UPer (bool) –
  • VPer (bool) –
  • Tolerance3D (float) –
  • UTolerance (float &) –
  • VTolerance (float &) –
Return type:

void

OCC.BSplSLib.bsplslib_Reverse(*args)
  • Reverses the array of poles. Last is the Index of the new first Row( Col) of Poles. On a non periodic surface Last is Poles.Upper(). On a periodic curve last is (number of flat knots - degree - 1) or (sum of multiplicities(but for the last) + degree - 1)
Parameters:
  • Poles (TColgp_Array2OfPnt) –
  • Last (Standard_Integer) –
  • UDirection (bool) –
Return type:

void

  • Reverses the array of weights.
Parameters:
  • Weights (TColStd_Array2OfReal &) –
  • Last (Standard_Integer) –
  • UDirection (bool) –
Return type:

void

OCC.BSplSLib.bsplslib_SetPoles(*args)
  • Copy in FP the coordinates of the poles.
Parameters:
  • Poles (TColgp_Array2OfPnt) –
  • FP (TColStd_Array1OfReal &) –
  • UDirection (bool) –
Return type:

void

  • Copy in FP the coordinates of the poles.
Parameters:
  • Poles (TColgp_Array2OfPnt) –
  • Weights (TColStd_Array2OfReal &) –
  • FP (TColStd_Array1OfReal &) –
  • UDirection (bool) –
Return type:

void

OCC.BSplSLib.bsplslib_Unperiodize(*args)
Parameters:
  • UDirection (bool) –
  • Degree (Standard_Integer) –
  • Mults (TColStd_Array1OfInteger &) –
  • Knots (TColStd_Array1OfReal &) –
  • Poles (TColgp_Array2OfPnt) –
  • Weights (TColStd_Array2OfReal &) –
  • NewMults (TColStd_Array1OfInteger &) –
  • NewKnots (TColStd_Array1OfReal &) –
  • NewPoles (TColgp_Array2OfPnt) –
  • NewWeights (TColStd_Array2OfReal &) –
Return type:

void